Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Materials Science and Engineering

Soil-Cement Bricks Produced From Local Clay Brick Waste And Soft Sludge From Fiber Cement Production, Nuntaporn Kongkajun, Edward A. Laitila, Pitcharat Ineure, Wichit Prakaypan, Benya Cherdhirunkorn, Parinya Chakartnarodom Dec 2020

Soil-Cement Bricks Produced From Local Clay Brick Waste And Soft Sludge From Fiber Cement Production, Nuntaporn Kongkajun, Edward A. Laitila, Pitcharat Ineure, Wichit Prakaypan, Benya Cherdhirunkorn, Parinya Chakartnarodom

Michigan Tech Publications

Soil-cement bricks were produced using local clay brick waste (CBW) and soft sludge (SS) from fiber-cement industries, preserving raw resources by substituting with industrial wastes. The control formula to produce soil-cement bricks, is 15 wt% Portland cement, 15 wt% sand, and 70 wt% laterite. Clay brick waste was added with values from 10 to 50 % of laterite weight in the control formula. For SS, 5 and 10 % was used to replace the total weight of the dry mixture in the control formula. The samples were shaped by using a manual brick making machine. The results showed that the …


Mechanical Properties Of Direct Waste Printing Of Polylactic Acid With Universal Pellets Extruder: Comparison To Fused Filament Fabrication On Open-Source Desktop Three-Dimensional Printers, Arthur Alexandre, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce Oct 2020

Mechanical Properties Of Direct Waste Printing Of Polylactic Acid With Universal Pellets Extruder: Comparison To Fused Filament Fabrication On Open-Source Desktop Three-Dimensional Printers, Arthur Alexandre, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce

Michigan Tech Publications

Fused filament fabrication (FFF) is the most common and widespread additive manufacturing (AM) technique, but it requires the formation of filament. Fused granular fabrication (FGF), where plastic granules are directly three-dimensional (3D) printed, has become a promising technique for the AM technology. FGF could be a key driver to promote further greening of distributed recycling thanks to the reduced melt solidification steps and elimination of the filament extruder system. However, only large-scale FGF systems have been tested for technical and economic viability of recycling plastic materials. The objective of this work is to evaluate the performance of the FFF and …


Open-Source Grinding Machine For Compression Screw Manufacturing, Jacob Franz, Joshua M. Pearce Sep 2020

Open-Source Grinding Machine For Compression Screw Manufacturing, Jacob Franz, Joshua M. Pearce

Michigan Tech Publications

Some of the most promising distributed recycling and additive manufacturing (DRAM) technical systems use fused particle fabrication (FPF) or fused granular fabrication (FGF), where compression screws force post-consumer waste plastic through a heated nozzle for direct 3D printing. To assist the technical evolution of these systems, this study provided the details of an invention for a low-cost, easily replicable open-source grinding machine for compression screw manufacturing. The system itself can be largely fabricated using FPF/FGF following the self-replicating rapid prototyper (RepRap) methodology. This grinding machine can be made from a cordless cut-off grinder and < $155 in parts. The new invention is demonstrated to be able to cut custom screws with variable (i) channel depths, (ii) screw diameters, (iii) screw lengths, (iv) pitches, (v) abrasive disk thicknesses, (vi) handedness of the screws, (vii) and materials (three types of steel tested: 1045 steel, 1144 steel, and 416 stainless steel). The results show that the device is more than capable of replicating commercial screws as well as providing makers with a much greater flexibility to make custom screws. This invention enables the DRAM toolchain to become even more self-sufficient, which assists the goals of the circular economy.


Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce Oct 2019

Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce

Michigan Tech Publications

In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use …


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved …


Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce May 2018

Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce

Department of Materials Science and Engineering Publications

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D …


Tightening The Loop On The Circular Economy: Distributed Plastic Recycling With An Open Source Recyclebot, Shan Zhong Jan 2017

Tightening The Loop On The Circular Economy: Distributed Plastic Recycling With An Open Source Recyclebot, Shan Zhong

Dissertations, Master's Theses and Master's Reports

Following the goals of a circular economy, the growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filament from waste plastic. However, traditional recycling can have a significant environmental impact as it demands the collection and transportation of relatively low-density waste plastics to collection centers and reclamation facilities for separation and reconstruction. Compared to the traditional recycling, distributed recycling (where consumers directly recycle their own waste) has the potential to reduce energy consumption because it can save the energy for transportation needed in conventional recycling. A promising method of such distributed plastic …