Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Materials Science and Engineering

Effect Of Sc On Recrystallization Resistance Of Aa7050, Keaton Schmidt Jan 2023

Effect Of Sc On Recrystallization Resistance Of Aa7050, Keaton Schmidt

Dissertations, Master's Theses and Master's Reports

The extrusion process involves high temperatures and strains that can result in undesirable microstructures, especially along the surface. Extruded alloys tend to exhibit surface recrystallization during heat treating at regions of higher strains, which can lead to reduced fatigue strength and corrosion resistance. By adding Sc to AA7050, nano-sized dispersoids are formed with Sc cores and Zr shells that restrict recrystallization more than the base alloy that only utilizes Zr. Billets with varying Sc content and a control with only Zr were cast, and extrusions were made in order to compare surface microstructures at varying strains in the as-extruded and …


Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe Jan 2021

Thermomechanical Mechanisms That Cause Adhesion Of Aluminum High Pressure Die Castings To The Die, Alex Monroe

Dissertations, Master's Theses and Master's Reports

In high pressure die casting (HPDC) of aluminum, cast material adhering to die is a significant defect. Adhesion occurs in two primary ways. The casting may stick preventing its removal from the die. Aluminum can also adhere to the die and buildup in local areas on the die surface with additional casting cycles. This second form of adhesion is called soldering. Lubricant is the best technology to control all forms of adhesion, but it comes at the cost of casting porosity, blisters, reduced die life, and increased die casting machine wear. New strategies to prevent adhesion are desired to eliminate …


Analyzing Variation In Dispersoid Formation In Aluminum Alloys By Minor Changes In Homogenization Temperature, Brendan Treanore Jan 2021

Analyzing Variation In Dispersoid Formation In Aluminum Alloys By Minor Changes In Homogenization Temperature, Brendan Treanore

Dissertations, Master's Theses and Master's Reports

The homogenization of billets in the aluminum extrusion industry is a critical step that removes chemical segregation from casting, dissolves low melting point phases, forms nanoscale dispersoid phases, and promotes the beta to alpha transformation of iron particles in the matrix. With ever increasing use of aluminum extrusion in the automotive industry there is a constant need for increased efficiency and consistency in processing of extruded aluminum. The work in this thesis explores the effects of 10°C differences in the homogenization temperature on the formation of dispersoids in 6082 alloys used in the automotive industry. The role of dispersoids is …


Effect Of Zr Additions On Thermal Stability Of Al-Cu Precipitates In As-Cast And Cold Worked Samples, Kyle Deane, Paul G. Sanders May 2018

Effect Of Zr Additions On Thermal Stability Of Al-Cu Precipitates In As-Cast And Cold Worked Samples, Kyle Deane, Paul G. Sanders

Michigan Tech Publications

While Zr is frequently added to Al alloys to control grain size with the formation of large (>1 μm) primary precipitates, little research has been conducted on the effect of nanoscale Al3Zr precipitates on Al alloys. By comparing the precipitation and corresponding strength evolution between Al-Cu-Zr alloys with different Zr concentrations, the effects of Zr on Al-Cu precipitation with and without primary Al3Zr precipitates can be observed. In the absence of these large precipitates, all Al3Zr phases can be formed, through high temperature aging treatments, as a dispersion of nanoprecipaites inside the Al …


Investigation And Modeling Of Al3(Sc, Zr) Precipitation Strengthening In The Presence Of Enhanced Supersaturation And Within Al-Cu Binary Alloys, Kyle Deane Jan 2016

Investigation And Modeling Of Al3(Sc, Zr) Precipitation Strengthening In The Presence Of Enhanced Supersaturation And Within Al-Cu Binary Alloys, Kyle Deane

Dissertations, Master's Theses and Master's Reports

Diffuse Al-Sc and Al-Zr alloys have been demonstrated in literature to be relatively coarsening resistant at higher temperatures when compared with commonly used precipitation strengthening alloys (e.g. 2000 series, 6000 series). However, because of a limited strengthening due to the low solubility of scandium and zirconium in aluminum, and owing to the scarcity and therefore sizeable price tag attached to scandium, little research has been done in the way of optimizing these alloys for commercial applications.

With this in mind, this dissertation describes research which aims to tackle several important areas of Al-Sc-Zr research that have been yet unresolved. In …


Development Of Precipitation Hardenable Al-Sc-Zr-Hf Quaternary Alloys Through Thermodynamic Modeling, And Room-Temperature And Elevated Temperature Hardness, Matthew J. Wong Jan 2014

Development Of Precipitation Hardenable Al-Sc-Zr-Hf Quaternary Alloys Through Thermodynamic Modeling, And Room-Temperature And Elevated Temperature Hardness, Matthew J. Wong

Dissertations, Master's Theses and Master's Reports - Open

Aluminum alloyed with small atomic fractions of Sc, Zr, and Hf has been shown to exhibit high temperature microstructural stability that may improve high temperature mechanical behavior. These quaternary alloys were designed using thermodynamic modeling to increase the volume fraction of precipitated tri-aluminide phases to improve thermal stability. When aged during a multi-step, isochronal heat treatment, two compositions showed a secondary room-temperature hardness peak up to 700 MPa at 450°C. Elevated temperature hardness profiles also indicated an increase in hardness from 200-300°C, attributed to the precipitation of Al3Sc, however, no secondary hardness response was observed from the Al …