Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Materials Science and Engineering

Thermal Post-Processing Of 3d Printed Polypropylene Parts For Vacuum Systems, Pierce Mayville, Aliaksei L. Petsiuk, Joshua M. Pearce Sep 2022

Thermal Post-Processing Of 3d Printed Polypropylene Parts For Vacuum Systems, Pierce Mayville, Aliaksei L. Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Access to vacuum systems is limited because of economic costs. A rapidly growing approach to reduce the costs of scientific equipment is to combine open-source hardware methods with digital distributed manufacturing with 3D printers. Although high-end 3D printers can manufacture vacuum components, again, the cost of access to tooling is economically prohibitive. Low-cost material extrusion 3D printing with plastic overcomes the cost issue, but two problems arise when attempting to use plastic in or as part of vacuum systems: the outgassing of polymers and their sealing. To overcome these challenges, this study explores the potential of using post-processing heat treatments …


Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce Apr 2021

Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce

Michigan Tech Publications

Historically, open source agriculture (OSA) was based on grassroots technology generally manufactured by hand tools or with manual machining. The rise of distributed digital manufacturing provides an opportunity for much more rapid lateral scaling of open source appropriate technologies for agriculture. However, the most mature distributed manufacturing area is plastic, which has limited use for many OSA applications. To overcome this limitation with design, this study reports on of a completely 3D-printable planetary roller screw linear actuator. The device is designed as a parametric script-based computer aided design (CAD) package to allow for the easy adaption for a number of …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam M. Pringle, Shane Oberloier, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID-19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce Oct 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra G. Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce Oct 2020

Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce

Michigan Tech Publications

Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying …


Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce Aug 2020

Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce

Michigan Tech Publications

The rapid technical evolution of additive manufacturing (AM) enables a new path to a circular economy using distributed recycling and production. This concept of Distributed Recycling via Additive Manufacturing (DRAM) is related to the use of recycled materials by means of mechanical recycling process in the 3D printing process chain. This paper aims to examine the current advances on thermoplastic recycling processes via additive manufacturing technologies. After proposing a closed recycling global chain for DRAM, a systematic literature review including 92 papers from 2009 to 2019 was performed using the scopus, web of science and springer databases. This work examines …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Conversion Of Self-Contained Breathing Apparatus Mask To Open Source Powered Air-Purifying Particulate Respirator For Fire Fighter Covid-19 Response, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

To assist firefighters and other first responders to use their existing equipment for respiration during the COVID-19 pandemic without using single-use, low-supply, masks, this study outlines an open source kit to convert a 3M-manufactured Scott Safety self-contained breathing apparatus (SCBA) into a powered air-purifying particulate respirator (PAPR). The open source PAPR can be fabricated with a low-cost 3-D printer and widely available components for less than $150, replacing commercial conversion kits saving 85% or full-fledged proprietary PAPRs saving over 90%. The parametric designs allow for adaptation to other core components and can be custom fit specifically to fire-fighter equipment, including …


Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Open Source High-Temperature Reprap For 3-D Printing Heat-Sterilizable Ppe And Other Applications, Noah G. Skrzypczak, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Thermal sterilization is generally avoided for 3-D printed components because of the relatively low deformation temperatures for common thermoplastics used for material extrusion-based additive manufacturing. 3-D printing materials required for high-temperature heat sterilizable components for COVID-19 and other applications demands 3-D printers with heated beds, hot ends that can reach higher temperatures than polytetrafluoroethylene (PTFE) hot ends and heated chambers to avoid part warping and delamination. There are several high temperature printers on the market, but their high costs make them inaccessible for full home-based distributed manufacturing required during pandemic lockdowns. To allow for all these requirements to be met …


Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce May 2020

Parametric Nasopharyngeal Swab For Sampling Covid-19 And Other Respiratory Viruses: Open Source Design, Sla 3-D Printing And Uv Curing System, Nicole Gallup, Adam Pringle, Shane Oberloier, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Access to nasopharyngeal swabs for sampling remain a bottleneck in some regions for COVID19 testing. This study develops a distributed manufacturing solution using only an open source manufacturing tool chain consisting of two types of open source 3-D printing and batch UV curing, and provides a parametric fully free design of a nasopharyngeal swab. The swab was designed using parametric OpenSCAD in two components (a head with engineered break point and various handles), which has several advantages: i) minimizing print time on relatively slow SLA printers, ii) enabling the use of smaller print volume open source SLA printers, iii) reducing …


Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce Oct 2019

Open Source Waste Plastic Granulator, Arvind Ravindran, Sean Scsavnicki, Walker Nelson, Peter Gorecki, Jacob Franz, Shane Oberloier, Theresa K. Meyer, Andrew Barnard, Joshua M. Pearce

Michigan Tech Publications

In order to accelerate deployment of distributed recycling by providing low-cost feed stocks of granulated post-consumer waste plastic, this study analyzes an open source waste plastic granulator system. It is designed, built, and tested for its ability to convert post-consumer waste, 3D printed products and waste into polymer feedstock for recyclebots of fused particle/granule printers. The technical specifications of the device are quantified in terms of power consumption (380 to 404 W for PET and PLA, respectively) and particle size distribution. The open source device can be fabricated for less than $2000 USD in materials. The experimentally measured power use …


Low-Cost Open Source Ultrasound-Sensing Based Navigational Support For The Visually Impaired, Aliaksei Petsiuk, Joshua M. Pearce Aug 2019

Low-Cost Open Source Ultrasound-Sensing Based Navigational Support For The Visually Impaired, Aliaksei Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Nineteen million Americans have significant vision loss. Over 70% of these are not employed full-time, and more than a quarter live below the poverty line. Globally, there are 36 million blind people, but less than half use white canes or more costly commercial sensory substitutions. The quality of life for visually impaired people is hampered by the resultant lack of independence. To help alleviate these challenges this study reports on the development of a low-cost, open-source ultrasound-based navigational support system in the form of a wearable bracelet to allow people with the lost vision to navigate, orient themselves in their …


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ASTM-approved …


Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce May 2019

Open Source Completely 3-D Printable Centrifuge, Salil S. Sule, Aliaksei Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Centrifuges are commonly required devices in medical diagnostics facilities as well as scientific laboratories. Although there are commercial and open source centrifuges, the costs of the former and the required electricity to operate the latter limit accessibility in resource-constrained settings. There is a need for low-cost, human-powered, verified, and reliable lab-scale centrifuges. This study provides the designs for a low-cost 100% 3-D printed centrifuge, which can be fabricated on any low-cost RepRap-class (self-replicating rapid prototyper) fused filament fabrication (FFF)- or fused particle fabrication (FPF)-based 3-D printer. In addition, validation procedures are provided using a web camera and free and open …


Economic Potential For Distributed Manufacturing Of Adaptive Aids For Arthritis Patients N The U.S., Nicole Gallup, Jennifer Bow, Joshua M. Pearce Dec 2018

Economic Potential For Distributed Manufacturing Of Adaptive Aids For Arthritis Patients N The U.S., Nicole Gallup, Jennifer Bow, Joshua M. Pearce

Department of Materials Science and Engineering Publications

By 2040, more than a quarter of the U.S. population will have diagnosed arthritic conditions. Adults with arthritis and other rheumatic conditions earn less than average yet have medical care expenditures that are over 12% of average household income. Adaptive aids can help arthritis patients continue to maintain independence and quality of life; however, their high costs limit accessibility for older people and the poor. One method used for consumer price reduction is distributed manufacturing with 3-D printers. In order to assess if such a method would be financially beneficial, this study evaluates the techno-economic viability of distributed manufacturing of …


Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce Mar 2018

Development Of A Resilient 3-D Printer For Humanitarian Crisis Response, Benjamin L. Savonen, Tobias Mahan, Maxwell W. Curtis, Jared W. Schreier, John K. Greshonen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Rapid manufacturing using 3-D printing is a potential solution to some of the most pressing issues for humanitarian logistics. In this paper, findings are reported from a study that involved development of a new type of 3-D printer. In particular, a novel 3-D printer that is designed specifically for reliable rapid manufacturing at the sites of humanitarian crises. First, required capabilities are developed with design elements of a humanitarian 3-D printer, which include, (1) fused filament fabrication, (2) open source self-replicating rapid prototyper design, (3) modular, (4) separate frame, (5) protected electronics, (6) on-board computing, (7) flexible power supply, and …


Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce Feb 2017

Emergence Of Home Manufacturing In The Developed World: Return On Investment For Open-Source 3-D Printers., Emily E. Petersen, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing a printer operator who was relatively unfamiliar with 3-D printing and the 3-D design files of common items normally purchased by the average consumer. Twenty-six items were printed in thermoplastic and a cost analysis was performed through comparison to comparable, commercially available products at a low and high price range. When compared to the low-cost items, investment …


Open Source Laser Polymer Welding System: Design And Characterization Of Linear Low-Density Polyethylene Multilayer Welds, John Laureto, Serguei V. Dessiatoun, Michael M. Ohadi, Joshua M. Pearce Jul 2016

Open Source Laser Polymer Welding System: Design And Characterization Of Linear Low-Density Polyethylene Multilayer Welds, John Laureto, Serguei V. Dessiatoun, Michael M. Ohadi, Joshua M. Pearce

Department of Materials Science and Engineering Publications

The use of lasers to weld polymer sheets provides a means of highly-adaptive and custom additive manufacturing for a wide array of industrial, medical, and end user/consumer applications. This paper provides an open source design for a laser polymer welding system, which can be fabricated with low-cost fused filament fabrication and off-the-shelf mechanical and electrical parts. The system is controlled with free and open source software and firmware. The operation of the machine is validated and the performance of the system is quantified for the mechanical properties (peak load) and weld width of linear low density polyethylene (LLDPE) lap welds …


Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce Jan 2016

Free And Open-Source Control Software For 3-D Motion And Processing, Bas Wijnen, G. C. Anzalone, Amberlee S. Haselhuhn, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

RepRap 3-D printers and their derivatives using conventional firmware are limited by: 1) requiring technical knowledge, 2) poor resilience with unreliable hardware, and 3) poor integration in complicated systems. In this paper, a new control system called Franklin, for CNC machines in general and 3-D printers specifically, is presented that enables web-based three dimensional control of additive, subtractive and analytical tools from any Internet connected device. Franklin can be set up and controlled entirely from a web interface; it uses a custom protocol which allows it to continue printing when the connection is temporarily lost, and allows communication with scripts.


Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce Nov 2015

Integrated Voltage—Current Monitoring And Control Of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer, Yuenyong Nilsiam, Amberlee S. Haselhuhn, Bas Wijnen, Paul G. Sanders, Joshua M. Pearce

Department of Materials Science and Engineering Publications

To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap) 3-D printers requires a low-cost sensor and data logger system to measure current (I) and voltage (V) of the gas metal arc welders (GMAW). This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s …