Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Materials Science and Engineering

Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil Jan 2022

Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil

Dissertations, Master's Theses and Master's Reports

High-performance polymers are extensively used in the aerospace and aeronautics industries due to their low density, high specific strength, and high specific stiffness. These properties along with better infiltration with reinforcements [carbon nanotubes (CNTs), glass, etc.] capability make them an excellent candidate to fabricate Polymer Matrix Composites (PMCs) tailored for specific applications. The applications range from products used daily to deep space exploration. These materials are subjected to varying temperatures and pressures during fabrication and in service. Therefore, the evolution of their intrinsic properties needs to be studied and their ability to sustain extreme environmental conditions in outer space needs …


Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian Jan 2022

Microscale Transverse Compression Modeling: A Comparative Study Of The Analytical Mac/Gmc Methods To Experimental Results, Emily Zeitunian

Dissertations, Master's Theses and Master's Reports

Composite materials require a multi-scale approach to fully understand its behavior. At the micro level, material behavior analysis is conducted most often using numerical or analytical approaches. These models, however, require validation from experimental data to ensure material predictions are accurate. This study compares a semi-analytical micromechanical analysis tool, MAC/GMC, to experimental results of in-situ microscale transverse compression testing conducted at AFRL facilities. Effective properties, stress-strain curves, stress and strain fields, and damage predictions are compared with experimental outputs. Both generalized method of cells (GMC) and high-fidelity generalized method of cells (HFGMC) theories implemented within MAC/GMC show results that agree …


Length-Scale-Dependent Stress Relief Mechanisms In High Purity Indium, Fereshteh Mallakpour Jan 2022

Length-Scale-Dependent Stress Relief Mechanisms In High Purity Indium, Fereshteh Mallakpour

Dissertations, Master's Theses and Master's Reports

Lithium-ion batteries are widely used in portable electronics and electric vehicles. However, due to the presence of flammable liquid electrolytes, these devices fail catastrophically when the cell experiences a short circuit. One attractive solution to this problem is a solid-state battery. As the name implies, the flammable liquid electrolyte is replaced by a non-flammable solid-state electrolyte (SSE). The unexpected, yet frequently observed failure mechanism in these devices is the formation and growth of lithium dendrites originating at the interface between the lithium anode and the SSE. As the dendrites grow, device performance degrades. Once the dendrites completely penetrate the SSE, …