Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Materials Science and Engineering

Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard Oct 2023

Evolution Of Glassy Carbon Derived From Pyrolysis Of Furan Resin, Josh Kemppainen, Ivan Gallegos, Aaron Krieg, Jacob R. Gissinger, Kristopher E. Wise, Margaret Kowalik, Julia A. King, S. Gowtham, Adri Van Duin, Gregory Odegard

Michigan Tech Publications, Part 2

Glassy carbon (GC) material derived from pyrolyzed furan resin was modeled by using reactive molecular dynamics (MD) simulations. The MD polymerization simulation protocols to cure the furan resin precursor material are validated via comparison of the predicted density and Young's modulus with experimental values. The MD pyrolysis simulations protocols to pyrolyze the furan resin precursor is validated by comparison of calculated density, Young's modulus, carbon content, sp carbon content, the in-plane crystallite size, out-of-plane crystallite stacking height, and interplanar crystallite spacing with experimental results from the literature for furan resin derived GC. The modeling methodology established in this work can …


Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard Sep 2023

Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard

Michigan Tech Publications, Part 2

The complex structural and chemical changes that occur during polymerization and pyrolysis critically affect material properties but are difficult to characterize in situ. This work presents a novel, experimentally validated methodology for modeling the complete polymerization and pyrolysis processes for phenolic resin using reactive molecular dynamics. The polymerization simulations produced polymerized structures with mass densities of 1.24 ± 0.01 g/cm3 and Young's moduli of 3.50 ± 0.64 GPa, which are in good agreement with experimental values. The structural properties of the subsequently pyrolyzed structures were also found to be in good agreement with experimental X-ray data for the phenolic-derived carbon …


Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane Jan 2023

Molecular Dynamics Modeling Of Polymers For Aerospace Composites, Swapnil Sambhaji Bamane

Dissertations, Master's Theses and Master's Reports

Polymer matrix composite materials are widely used as structural materials in aerospace and aeronautical vehicles. Resin/reinforcement wetting and the effect of polymerization on the thermo-mechanical properties of the resin are key parameters in the manufacturing of aerospace composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. It is challenging to determine contact angle values experimentally of high-performance resins on CNT materials such as CNT, graphene, bundles or yarns, and BNNT surfaces. It is also experimentally difficult to determine the effect of polymerization reaction on material properties of a …


Origin Of Magnetism In Γ-Fesi 2 /Si(111) Nanostructures, Liwei D. Geng, Sahil Dhoka, Ilan Goldfarb, Ranjit Pati, Yongmei M. Jin Mar 2021

Origin Of Magnetism In Γ-Fesi 2 /Si(111) Nanostructures, Liwei D. Geng, Sahil Dhoka, Ilan Goldfarb, Ranjit Pati, Yongmei M. Jin

Michigan Tech Publications

Magnetism has recently been observed in nominally nonmagnetic iron disilicide in the form of epitaxial γ-FeSi2 nanostructures on Si(111) substrate. To explore the origin of the magnetism in γ-FeSi2/Si(111) nanostructures, we performed a systematic first-principles study based on density functional theory. Several possible factors, such as epitaxial strain, free surface, interface, and edge, were examined. The calculations show that among these factors, only the edge can lead to the magnetism in γ-FeSi2/Si(111) nanostructures. It is shown that magnetism exhibits a strong dependency on the local atomic structure of the edge. Furthermore, magnetism can be enhanced by creating multiple-step edges. In …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


Spontaneous Selective Deposition Of Iron Oxide Nanoparticles On Graphite As Model Catalysts, Chathura De Alwis, Timothy Leftwich, Pinaki Mukherjee, Alex Denofre, Kahryn Perrine Aug 2019

Spontaneous Selective Deposition Of Iron Oxide Nanoparticles On Graphite As Model Catalysts, Chathura De Alwis, Timothy Leftwich, Pinaki Mukherjee, Alex Denofre, Kahryn Perrine

Michigan Tech Publications

Iron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution. To study the nucleation and growth of iron oxide nanoparticles, tailored defects were created on the surface of HOPG using various ion sources that serve as the target sites for iron oxide nucleation. After solution deposition and annealing, the iron oxide nanoparticles were found to nucleate …


Towards Sustainable Production Of Chemicals And Fuels From The Fast Pyrolysis Of Waste Polyolefin Plastics, Ulises Gracida Alvarez Jan 2019

Towards Sustainable Production Of Chemicals And Fuels From The Fast Pyrolysis Of Waste Polyolefin Plastics, Ulises Gracida Alvarez

Dissertations, Master's Theses and Master's Reports

The increasing amount of plastic waste (PW) generation has become an important concern due to the leveled-off recycling rates. Therefore, governmental agencies around the world, including state governments in the United States, have proposed initiatives to minimize the amount of PW that is landfilled and encourage recycling or energy recovery. Circular economy is a strategy that attempts on reusing PW to produce new polymers while avoiding its disposal and the use of virgin material. Chemical recycling raises an interesting technology prospect due to the potential reduction of pollutant emissions and the establishment of a circular economy through the production of …


Nondestructive Evaluation Of Salvage White Spruce, Tyler Hovde Jan 2018

Nondestructive Evaluation Of Salvage White Spruce, Tyler Hovde

Dissertations, Master's Theses and Master's Reports

Knowledge of wood quality in dead standing trees is an important topic with recent increases in defoliation across North America. Obtaining wood quality information for defoliated trees would help stakeholders in the timber products industry sort and sell salvaged material for the highest possible value. This research investigates the ability to measure wood quality of white spruce (Picea glauca) after spruce budworm (Choristoneura fumiferana) attack using acoustic nondestructive evaluation. We compared stress wave velocities measured on standing trees to trees’ visual appearance. After harvest and processing of selected trees into bolts, standing-tree stress wave velocities were compared to bolt acoustic …


Nonlinear Dielectric Behavior Of Field-Induced Antiferroelectric/Paraelectric-To-Ferroelectric Phase Transition For High Energy Density Capacitor Application, Mingyang Li Jan 2017

Nonlinear Dielectric Behavior Of Field-Induced Antiferroelectric/Paraelectric-To-Ferroelectric Phase Transition For High Energy Density Capacitor Application, Mingyang Li

Dissertations, Master's Theses and Master's Reports

Electric field-induced antiferroelectric(AFE)/paraelectric(PE)-to-ferroelectric(FE) phase transitions are investigated for the associated nonlinear dielectric behavior, which could offer high dielectric capacity. The phenomenon in monolithic materials has been computed for Kittel antiferroelectric and BaTiO3 model systems using the Landau-Ginzburg-Devonshire theory. The general switching curves give values of the polarization as a function of external electric field. A similar computation is performed for particle-filled polymer-matrix composites where an internal depolarization field is considered. The polarization-electric field response changes with different depolarization factors, which demonstrate the shape and alignment of the dielectric particles embedded in polymer-matrix are key factors for the composite to …


Dynamic Atomistic Study Of Tunnel Functions In Nanostructured Transitional Metal Oxides, Yifei Yuan Jan 2016

Dynamic Atomistic Study Of Tunnel Functions In Nanostructured Transitional Metal Oxides, Yifei Yuan

Dissertations, Master's Theses and Master's Reports

Alpha (α-) MnO2 is a well know transitional metal oxide possessing one dimensional 2×2 (4.6 × 4.6 Å2) tunnels for accommodation of various ions. Such a characteristic tunneled structure has enabled the wide applications of α-MnO2 in the fields of ion exchange, molecular sieves, biosensor, catalysis and energy storage. This PhD dissertation focuses on the dynamic study of ion transport functionality of α-MnO2 at atomic level using an aberration corrected scanning transmission electron microscopy equipped with a special holder with a scanning tunneling microscopy probe.

The wide application of in situ TEM studying the dynamic …


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can …


Investigation Of The Resistance To Demagnetization In Bulk Rare-Earth Magnets Comprised Of Crystallographically-Aligned, Single-Domain Crystallites With Modified Intergranular Phase, Jie Li Jan 2016

Investigation Of The Resistance To Demagnetization In Bulk Rare-Earth Magnets Comprised Of Crystallographically-Aligned, Single-Domain Crystallites With Modified Intergranular Phase, Jie Li

Dissertations, Master's Theses and Master's Reports

The research presented in this dissertation investigates whether an increased coercivity of Neodymium-Iron-Boron (Nd2Fe14B) based bulk magnets at elevated temperature (160°C), which is now only obtainable by substituting ~7wt% dysprosium (Dy) for a portion of neodymium (Nd), can be achieved through specific microstructural modifications with decreased Dy concentrations. The approach is to reduce the size of individual crystallographically-aligned grains in the magnet so that each grain can only support a single magnetic domain and to simultaneously dilute the Nd-Fe inter-granular phase present in conventional magnets with a non-Fe-containing, Nd-rich phase (Nd-Cu alloy) in an attempt to partially magnetically isolate the …


Modeling And Simulation Of Microstructures, Mechanisms, And Diffraction Effects In Energy Materials: Ferroelectrics And Lithium Ion Battery Cathode Materials, Jie Zhou Jan 2015

Modeling And Simulation Of Microstructures, Mechanisms, And Diffraction Effects In Energy Materials: Ferroelectrics And Lithium Ion Battery Cathode Materials, Jie Zhou

Dissertations, Master's Theses and Master's Reports - Open

Ferroelectric materials, as a large family exploited for the application of sensors, transducers and random access memories, open up a remarkable ground both for fundamental science and industry. Dielectric and piezoelectric properties are of the most interest in ferroelectric materials, which motivate research to enhance ferroelectric properties based on various application purposes. Among the multitudinous candidates in ferroelectric family, pseudo binary solid solutions with ABO3 lattice structure attract special attention in virtue of their large strain response when applying external loading. Furthermore, existence of morphological phase boundary (MPB) on their phase diagrams shed light on tuning material compositions to …


Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng Jan 2015

Structures, Properties And Functionalities Of Magnetic Domain Walls In Thin Films, Nanowires And Atomic Chains: Micromagnetic And Ab Initio Studies, Liwei D. Geng

Dissertations, Master's Theses and Master's Reports - Open

Structures, properties and functionalities of magnetic domain walls in thin film, nanowires and atomic chains are studied by micromagnetic simulations and ab initio calculations in this dissertation. For magnetic domain walls in thin films, we computationally investigated the dynamics of one-dimensional domain wall line in ultrathin ferromagnetic film, and the exponent α = 1.24 ± 0.05 is obtained in the creep regime near depinning force, indicating the washboard potential model is supported by our simulations. Furthermore, the roughness, creep, depinning and flow of domain wall line with commonly existed substructures driven by magnetic field are also studied. Our simulation results …


Biological Materials: Part A. Temperature-Responsive Polymers And Drug Delivery And Part B. Polymer Modification Of Fish Scale And Their Nano-Mechanical Properties, Xu Xiang Jan 2015

Biological Materials: Part A. Temperature-Responsive Polymers And Drug Delivery And Part B. Polymer Modification Of Fish Scale And Their Nano-Mechanical Properties, Xu Xiang

Dissertations, Master's Theses and Master's Reports - Open

This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas.

Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers …


Design, Synthesis And Applications Of Fluorescent And Electrochemical Probes, Giri K. Vegesna Jan 2014

Design, Synthesis And Applications Of Fluorescent And Electrochemical Probes, Giri K. Vegesna

Dissertations, Master's Theses and Master's Reports - Open

“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and …


An Investigation Of Waste Glass-Based Geopolymers Supplemented With Alumina, Mary U. Christiansen Jan 2013

An Investigation Of Waste Glass-Based Geopolymers Supplemented With Alumina, Mary U. Christiansen

Dissertations, Master's Theses and Master's Reports - Open

An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production.

Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have …


Parametric Study Of Reaxff Simulation Parameters For Molecular Dynamics Modeling Of Reactive Carbon Gases, Benjamin David Jensen Jan 2013

Parametric Study Of Reaxff Simulation Parameters For Molecular Dynamics Modeling Of Reactive Carbon Gases, Benjamin David Jensen

Dissertations, Master's Theses and Master's Reports - Open

Abstract

The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with …


The Use Of Life-Cycle Analysis To Reduce The Environmental Impact Of Materials In Manufacturing, Megan A. Kreiger Jan 2012

The Use Of Life-Cycle Analysis To Reduce The Environmental Impact Of Materials In Manufacturing, Megan A. Kreiger

Dissertations, Master's Theses and Master's Reports - Open

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to determine cumulative energy demand (CED) and greenhouse gas emissions (GHG). The methods proposed could reduce the environmental impact by reducing the CED in three manufacturing processes.

First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Using a recycling process that results in a silane loss of only 17 versus 85 percent, this results in a CED savings of 81,700 …