Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Science and Engineering

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge Jan 2024

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge

Dissertations, Master's Theses and Master's Reports

Every year, thousands of cast-steel railcar couplers suffer from corrosion-initiated fatigue cracking in similar areas of the coupler’s knuckle; between 2015 and 2018 about 90,000 knuckles were replaced, otherwise these couplers would have been at risk for unexpected failures. These types of couplers have been common in industrial use as early as 1932, hence it is desirable for a countermeasure to the fatigue cracking that does not involve significantly altering the geometry or casting process. Wire arc additive manufacturing (WAM) is a developing technology which boasts the ability to produce complex near-net-shape components; however, less attention has been paid to …


Nickel Superalloy Composition And Process Optimization For Weldability, Cost, And Strength, Sophie A. Mehl Jan 2024

Nickel Superalloy Composition And Process Optimization For Weldability, Cost, And Strength, Sophie A. Mehl

Dissertations, Master's Theses and Master's Reports

To advance sustainability efforts, electric power plants have reduced specific carbon dioxide emissions by increasing operating temperatures and pressures to improve power generation efficiency. The latest improvements are utilized in advanced ultra-supercritical power generation. To meet these operating conditions, nickel superalloys are used in the highest temperature components; however, they are expensive and present weldability challenges. This project aims to experimentally optimize a nickel superalloy to improve material weldability and decrease cost without compromising strength. Three optimized compositions were developed, and their microstructures and mechanical properties were compared to Nimonic 263, a common nickel superalloy in electric power plants. The …