Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Materials Science and Engineering

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


Effect Of Hierarchical Structure And Orientation On Water-Repellent Legs Of Water-Walking Insects, Georgia Hurchalla Jan 2018

Effect Of Hierarchical Structure And Orientation On Water-Repellent Legs Of Water-Walking Insects, Georgia Hurchalla

Dissertations, Master's Theses and Master's Reports

Some insects have the ability to walk on water surface due to hierarchical leg structure and wax coating. This work presents studies of water strider and fire ant leg immersion force profiles to measure resistance of legs to submersion and show orientation effects. A high-sensitivity microbalance measured force during immersion of insect legs at various angles into water droplets. Legs oriented parallel to water surface could support three to five times as much force before immersion, compared to legs in a perpendicular orientation. Water pressure affects the setae structure differently at parallel and perpendicular approaches, and complete wetting is more …


An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal Jan 2018

An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal

Dissertations, Master's Theses and Master's Reports

After injury, wound healing is a complex sequential cascade of events essential for the proper recovery of the wound without the scar formation. Nitric oxide (NO) is a small, endogenous free-radical gas with antimicrobial, vasodilating and growth factor stimulating properties. NO has wide biomedical application especially in wound healing however, its usability is hindered due its administration problem as it is highly unstable.

In this work, poly (l-lactic acid) microparticles encapsulated with NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) were prepared using water-in-oil-water double emulsion solvent evaporation method for controlled delivery for NO at the specific site. The NO release from SNAP-PLLA microparticles …


Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang Jan 2018

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang

Dissertations, Master's Theses and Master's Reports

In this research, the degradable polymer 4-arm poly (ethylene glycol)-glutaric acid-dopamine (PEG-GA-DM4) was synthesized. The degradation behavior of crosslinked PEG-GA-DM4 bioadhesive was studied with mass tracking, oscillatory rheology, and magnetoelastic (ME) sensors. Changes in mechanical properties were correlated with both dry mass and wet mass changes during the degradation. The results indicate that the loss of mechanical property in the bioadhesive can take place without losing the dry mass. The mass loss profile cannot describe the degradation behavior completely. In addition to studying the degradation of PEG-GA-DM4, this research also confirms the application of ME …


Structural Characteristics And Corrosion Behavior Of Bio-Degradable Zn-Li Alloys In Stent Application, Shan Zhao Jan 2017

Structural Characteristics And Corrosion Behavior Of Bio-Degradable Zn-Li Alloys In Stent Application, Shan Zhao

Dissertations, Master's Theses and Master's Reports

Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn’s intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic.

In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is implanted …


Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu Jan 2017

Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu

Dissertations, Master's Theses and Master's Reports

The structure of catechol is found in mussel adhesive proteins and contributed to both wet-resistant adhesion and cohesive curing of these proteins. A synthetic nano-silicate, Laponite was incorporated into catechol-containing hydrogels and the hydrogel network-bound catechol formed strong reversible interfacial interaction with Laponite. The contribution of incorporated catechol-Laponite reversible interfacial interactions to the mechanics of hydrogels constructed by different strategies was studied. In the first strategy, Laponite and catechol were introduced into the double network hydrogel (DN) via the free radical co-polymerization of a catechol-containing monomer, backbone monomer, and crosslinker. The introduction of catechol-Laponite interactions significantly improved the compressive strength …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …


Electrospinning Novel Aligned Polymer Fiber Structures For Use In Neural Tissue Engineering, Rachel Martin Jan 2017

Electrospinning Novel Aligned Polymer Fiber Structures For Use In Neural Tissue Engineering, Rachel Martin

Dissertations, Master's Theses and Master's Reports

A suitable tissue scaffold to support and assist in the repair of damaged tissues or cells is important for success in clinical trials and for injury recovery. Electrospinning can create a variety of polymer nanofibers and microfibers, and is being widely used to produce experimental tissue scaffolds for neural applications. This dissertation examines various approaches by which electrospinning is being used for neural tissue engineering applications for the repair of injuries to the central nervous system (CNS) and the peripheral nervous system (PNS). Due to the poor regeneration of neural tissues in the event of injury, tissue scaffolds are being …


Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne Jan 2016

Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne

Dissertations, Master's Theses and Master's Reports

Bacterial infections continue to be a problem at the site of an indwelling medical device, and over the years, various bacterial strains have become more resistant to current antibiotic treatments. Bacterial infection at an indwelling medical device can be dangerous and affect the performance of the medical device which can ultimately lead to the failure of the device due to bacterial resistance to treatment.

Nitric Oxide (NO) has been shown to possess antibacterial properties to prevent and inhibit bacterial growth. NO releasing coatings on indwelling medical devices could provide a reduction in bacterial infections that occur at the device site …


Biocorrosion Rate And Mechanism Of Metallic Magnesium In Model Arterial Environments, Patrick Bowen Jan 2015

Biocorrosion Rate And Mechanism Of Metallic Magnesium In Model Arterial Environments, Patrick Bowen

Dissertations, Master's Theses and Master's Reports

A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. …