Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Materials Science and Engineering

Computational Studies Of Grain Boundary Behavior In Uranium Dioxide Nuclear Fuels, Eric Nelson, Lan Li (Mentor), Simon C. Middleburgh (Mentor) Jan 2017

Computational Studies Of Grain Boundary Behavior In Uranium Dioxide Nuclear Fuels, Eric Nelson, Lan Li (Mentor), Simon C. Middleburgh (Mentor)

Idaho Conference on Undergraduate Research

Nuclear power is responsible for the production of 380,000 Megawatts of energy worldwide, which results in over 11% of the world’s energy production [world-nuclear.org]. Pellet-cladding interactions (PCI) are a key nuclear fuel failure mechanism which presents formidable challenges to researchers due to extreme nuclear fission conditions. Although PCI interactions have been reduced due to fuel additives, understandings of PCI interactions remain elusive. We propose new approaches to increase understanding of nuclear fuel interactions; specifically, uranium dioxide and the effects of dopants. This study focuses on amorphous uranium dioxide and fission products, while benchmarking new methods with previous computational studies. Results …


Cermet Development For High Temperature And High Pressure Applications, Beatriz Justus Ferez, Samantha Guthrie, Brian J. Jaques (Mentor), Darryl P. Butt (Mentor) Jan 2017

Cermet Development For High Temperature And High Pressure Applications, Beatriz Justus Ferez, Samantha Guthrie, Brian J. Jaques (Mentor), Darryl P. Butt (Mentor)

Idaho Conference on Undergraduate Research

Many traditionally used low cost alloys are easily corroded in steam or supercritical CO2. An effective solution is to utilize ceramic heat exchangers that are often integrated with metallic components which result in a significant thermal expansion mismatch. The goal of this project is to develop a sealing method to create a hermetic joint between the ceramic and metal alloy. Proposed is a seal ring containing a cermet powder with a coefficient of thermal expansion (CTE) higher than the ceramic and metal to produce a high temperature compressive seal. Cermets of Ag and MgO have been selected to …


Verifying The Implementation Of An Anisotropic Grain Boundary Energy Model In Idaho National Lab’S Marmot, John-Michael H. Bradley, Evan D. Hansen, Jarin C. French, Yongfeng Zhang (Mentor) Jan 2017

Verifying The Implementation Of An Anisotropic Grain Boundary Energy Model In Idaho National Lab’S Marmot, John-Michael H. Bradley, Evan D. Hansen, Jarin C. French, Yongfeng Zhang (Mentor)

Idaho Conference on Undergraduate Research

This work aims to verify the correct implementation of an anisotropic grain boundary (GB) energy model for face-centered cubic (FCC) and fluorite materials in Idaho National Laboratory’s phase field fuel performance code MARMOT. The model was recently implemented in MARMOT with the purpose of enabling higher fidelity simulations of UO2 nuclear fuels. As part of verification, tests were performed to measure the energy dependence on misorientation of high symmetry GBs in an FCC metal (Cu). The energies of the [100], [110], and [111] twist boundaries result as predicted, as do the energies of the [111] symmetric tilt boundaries. However, …


First-Principles Studies Of Perovskite Compounds For Thermoelectric Applications, Penelope E. Ackerman, Lan Li (Mentor) Aug 2015

First-Principles Studies Of Perovskite Compounds For Thermoelectric Applications, Penelope E. Ackerman, Lan Li (Mentor)

Idaho Conference on Undergraduate Research

Computational modeling techniques have been used to provide detailed insights into the structure-property relationships of materials. We have collaborated with the National Institute of Standards and Technology to develop various perovskite compounds with desired thermoelectric properties. We have used density functional theory-based approaches to study structural stability and electrical properties of R2(FeCo)O6 perovskite compounds (R = Pr, Nd, Sm, Eu and Gd), for which Fe and Co randomly occupy the B-site. Vienna ab-initio simulation package (VASP) has been performed to optimize geometry and structure. Superlattice and locally disordered phases have been compared through a total energy minimization …