Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials

2020

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 50

Full-Text Articles in Materials Science and Engineering

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Preparations And Photoelectrochemical Performances Of Rgo-Tio2 Nanotubes Arrays, Ze-Yang Zhang, Lan Sun, Chang-Jian Lin Dec 2020

Preparations And Photoelectrochemical Performances Of Rgo-Tio2 Nanotubes Arrays, Ze-Yang Zhang, Lan Sun, Chang-Jian Lin

Journal of Electrochemistry

Decorating TiO2 nanotube arrays with RGO to improve the photocatalytic activity of TiO2 nanotube arrays has been reported. For the reported RGO-TiO2 nanotube arrays, TiO2 nanotube arrays were prepared by anodizing the high-purity Ti foil in an organic electrolyte for multiple-step treatments, while RGO were deposited on TiO2 nanotube arrays by using cyclic voltammetry or other electrical reduction methods. To enhance the reduction degree and the coverage of RGO on the resultant RGO-TiO2 nanotube arrays, in this work, the one-step electrochemical anodization in hydrofluoric acid was used to fabricate TiO2 nanotube arrays with …


Specific Features Of Optical Fiber Cable Operation During Tension And Change Of Ambient Temperature, Dilmurod Davronbekov, Zafar Khakimov Dec 2020

Specific Features Of Optical Fiber Cable Operation During Tension And Change Of Ambient Temperature, Dilmurod Davronbekov, Zafar Khakimov

Bulletin of TUIT: Management and Communication Technologies

This article examines the effect of longitudinal and thermoelastic deformation of an optical module on the technological reserve of an optical fiber. Analytical expressions are given for determining the lower limit of the technological margin of an optical fiber for various types of fiber-optic cable section along the axis.


Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji Dec 2020

Design, Fabrication, And Reliability Effects Of Additively Manufactured First Level Compliant Interconnects For Microelectronics Application, Tumininu David Olatunji

Graduate Theses and Dissertations

Semiconductor packaging and development is greatly dependent on the magnitude of interconnect and on-chip stress that ultimately limits the reliability of electronic components. Thermomechanical related strains occur because of the coefficient of thermal expansion mismatch from different conjoined materials being assembled to manufacture a device. To curb the effect of thermal expansion mismatch between conjoined parts, studies have been done in integrating compliant structures between dies, solder balls, and substrates. Initial studies have enabled the design and manufacturing of these structures using a photolithography approach which involves a high number of fabrication steps depending on the complexity of the structures …


Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar Dec 2020

Growth And Characterization Of Semiconductor Materials And Devices For Extreme Environments Applications, Abbas Sabbar

Graduate Theses and Dissertations

Numerous industries require electronics to operate reliably in harsh environments, such as extreme high temperatures (HTs), low temperature (LT), radiation rich environments, multi-extreme, etc. This dissertation is focused on two harsh environments: HT and multi-extreme.

The first study is on HT optoelectronics for future high-density power module applications. In the power modules design, galvanic isolation is required to pass through the gate control signal, reject the transient noise, and break the ground loops. The optocoupler, which consists of a lighting emitting diode (LED) and photodetector (PD), is commonly used as the solution of galvanic isolation at room temperatures. There is …


Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo Dec 2020

Fourier Transform Infrared Spectroscopy For The Measurement Of Gesn/(Si)Gesn, Solomon Opeyemi Ojo

Graduate Theses and Dissertations

Photoluminescence (PL) and Electroluminescence (EL) characterization techniques are important tools for studying the optical and electrical properties of (Si)GeSn. Light emission from these PL and EL measurements provides relevant information on material quality, bandgap energy, current density, and device efficiency. Prior to this work, the in-house PL set-up of this lab which involves the use of a commercially-obtained dispersive spectrometer was used for characterizing both GeSn thin film and fabricated devices, but these measurements were limited by issues bordering on low spectral resolution, spectral artifacts, and poor signal-to-noise ratio (SNR) thereby resulting in the possible loss of vital information and …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of …


High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan Dec 2020

High-Temperature Optoelectronic Device Characterization And Integration Towards Optical Isolation For High-Density Power Modules, Syam Madhusoodhanan

Graduate Theses and Dissertations

Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in …


Chemico-Physical Interactions In Metal Halide Perovskites, Yongtao Liu Dec 2020

Chemico-Physical Interactions In Metal Halide Perovskites, Yongtao Liu

Doctoral Dissertations

Metal halide perovskite (MHP) has attracted tremendous attention due to its success in optoelectronics, largely due to outstanding photovoltaic performance. A wide variety of characterization approaches have been used to explore the fundamentals behind the outstanding optoelectronic properties of MHP, which has yet to be unambiguously established despite considerable efforts to do so. Given the high ionic mobility in MHP, when physical phenomena are coupled with chemical changes, all behaviors will become very complex due to the strong ion migration. Therefore, chemico-physical interactions in MHP can no longer be ignored, which will be the focus of the researches in this …


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo Nov 2020

Organic-Inorganic Halide Perovskite Nanocrystals And Solar Cells, Rui Guo

FIU Electronic Theses and Dissertations

A great challenge facing humanity in the 21st century is finding inexhaustible and inexpensive energy sources to power the planet. Renewable energies are the best solutions because of their abundance, diversity, and pollution-free emission. Solar energy is the cleanest and most abundant renewable energy source available. In the continuing quest for efficient and low-cost solar cells, perovskite solar cells (PSCs) have emerged as a potential replacement for silicon solar cells. Since 2009, the record efficiencies of PSCs have been skyrocketing from 3.8 % to 25.2 % and are now approaching the theoretical limit. Along with the three-dimensional perovskites used …


Anisotropic Cuinse2 Nanocrystals: Synthesis, Optical Properties And Their Effect On Photoelectric Response Of Dye-Sensitized Solar Cell, Ahmed Mysara, M Mohsen Abdelaziz, A N. Emam, A S. Mansour, A A. F. Zikry, M .B Mohamed, Y H. Elbashar Nov 2020

Anisotropic Cuinse2 Nanocrystals: Synthesis, Optical Properties And Their Effect On Photoelectric Response Of Dye-Sensitized Solar Cell, Ahmed Mysara, M Mohsen Abdelaziz, A N. Emam, A S. Mansour, A A. F. Zikry, M .B Mohamed, Y H. Elbashar

Nanotechnology Research Centre

CuInSe2 I-III-VI2 ternary is a semiconductor considered very good efficient solar energy conversion material. An organometallic pyrolysis method is used to prepare monodisperse CuInSe2 nanoparticles using a mixture of oleylamine, and trioctylphosphine, as capping materials. The particle shape changes to dot, rods or flowers occur via varying the reaction temperatures (160, 200, 220±C) respectively. The obtained particles have been characterized to determine the shape and size of CuInSe2 nanoparticles using HR-TEM and XRD. The optical and electronic properties of these particles have been investigated and discussed in detail. Then the different shapes of CuInSe …


Temporally Multiplexed Ladar Polarimeter, Christian Keyser, Richard Kenneth Martin Oct 2020

Temporally Multiplexed Ladar Polarimeter, Christian Keyser, Richard Kenneth Martin

AFIT Patents

In a polarimeter, a polarization modulator changes a polarization phase of an output optical pulse with a modulation function that varies in time over the duration of the optical pulse. A static polarization state analyzer, which includes a one or more static polarization component analyzers and detectors, receives the modulated optical pulse after interaction with a target medium and provides time varying intensities of the polarization components of the received pulse. A signal processing module determines a polarization property of the target medium, such as a Mueller matrix, dependent upon time varied intensities over the duration of the received optical …


Mechanochemical Conversion Kinetics Of Red To Black Phosphorus And Scaling Parameters For High Volume Synthesis, Samuel V. Pedersen, Florent Muramutsa, Joshua D. Wood, Chad Husko, David Estrada, Brian J. Jaques Oct 2020

Mechanochemical Conversion Kinetics Of Red To Black Phosphorus And Scaling Parameters For High Volume Synthesis, Samuel V. Pedersen, Florent Muramutsa, Joshua D. Wood, Chad Husko, David Estrada, Brian J. Jaques

Materials Science and Engineering Faculty Publications and Presentations

Adopting black phosphorus (BP) as a material in electronic and optoelectronic device manufacturing requires the development and understanding of a large-scale synthesis technique. To that end, high-energy planetary ball milling is demonstrated as a scalable synthesis route, and the mechanisms and conversion kinetics of the BP phase transformation are investigated. During the milling process, media collisions rapidly compress amorphous red phosphorus (RP) into crystalline, orthorhombic BP flakes, resulting in a conversion yield of ≈90% for ≈5 g of bulk BP powder. Milling conversion kinetics, monitored via ex situ x-ray diffraction, manifest a sigmoidal behavior best described by the Avrami rate …


Nonlinear Optical Measurements Of Cdsip2 At Near And Mid-Infrared Wavelengths, Manuel R. Ferdinandus, Jamie J. Gengler, Kent L. Averett, Kevin T. Zawilski, Peter G. Schunemann, Carl M. Liebig Sep 2020

Nonlinear Optical Measurements Of Cdsip2 At Near And Mid-Infrared Wavelengths, Manuel R. Ferdinandus, Jamie J. Gengler, Kent L. Averett, Kevin T. Zawilski, Peter G. Schunemann, Carl M. Liebig

Faculty Publications

We measure the birefringence of the nonlinear optical (NLO) properties of cadmium silicon phosphide via the Z-scan technique at near and mid-infrared wavelengths. We discuss the implications of the NLO properties on optical parametric amplifier performance. We find that the nonlinear absorption does reduce the conversion efficiency, while the nonlinear refraction has a negligible effect.


Research Progresses Of Copper Interconnection In Chips, Lei Jin, Jia-Qiang Yang, Fang-Zu Yang, Dong-Ping Zhan, Zhong-Qun Tian, Shao-Min Zhou Aug 2020

Research Progresses Of Copper Interconnection In Chips, Lei Jin, Jia-Qiang Yang, Fang-Zu Yang, Dong-Ping Zhan, Zhong-Qun Tian, Shao-Min Zhou

Journal of Electrochemistry

In this paper, the copper interconnection technology in chip manufacturing is introduced in detail, and the essentials of acidic copper sulfate electroplating process and the mechanisms of common-used additives are reviewed. The progresses of novel additives at home and abroad are also summarized. Based on the studied achievement, the possibility of the novel copper interconnect process replacing the acidic copper electroplating is prospected.


Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry Aug 2020

Fabrication Of Silicon Microneedles For Dermal Interstitial Fluid Extraction In Human Subjects, Caleb A. Berry

Electronic Theses and Dissertations

The goal of this project is to design and develop a fabrication process for silicon microneedle arrays to extract dermal interstitial fluid (ISF) from human skin. ISF is a cell- free, living tissue medium that is known to contain many of the same, clinical biomarkers of general health, stress response and immune status as in blood. However, a significant barrier to adoption of ISF as a diagnostic matrix is the lack of a rapid, minimally invasive method of access and collection for analysis. Microfabricated chips containing arrays of microneedles that can rapidly and painlessly access and collect dermal ISF for …


Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif Aug 2020

Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif

MSU Graduate Theses

The performance of ZnO thin film (grown in different parameters) as a thin film transistor (TFT) is the focus of this study. ZnO is renowned for being n-type semiconductor naturally which was utilized in fabricating a thin film transistor here. This thesis is compared the performance of ZnO thin film transistor by growing the thin film using pulsed laser deposition (PLD) on two slightly different substrates at different temperatures in an optimal 0.1 milli bar oxygen pressure which was later analyzed using other material characterization methods. The substrates were both Si (100) but had different resistivity due to different amount …


Exploration Of Thin Films For Neuromorphic, Electrofluidic, And Magneto-Plasmonic Applications, Walker L. Boldman Aug 2020

Exploration Of Thin Films For Neuromorphic, Electrofluidic, And Magneto-Plasmonic Applications, Walker L. Boldman

Doctoral Dissertations

Due to the limit in computing power arising from the Von Neumann bottleneck, computational devices are being developed that mimic neuro-biological processing in the brain by correlating the device characteristics with the synaptic weight of neurons. We demonstrate a platform that combines ionic liquid gating of amorphous indium gallium zinc oxide (aIGZO) thin film transistors and electrowetting for programmable placement/connectivity of the of the ionic liquid. In this platform, both short term potentiation (STP) and long-term potentiation (LTP) are realized via electrostatic and electrochemical doping of the aIGZO, respectively, and pulsed bias measurements are demonstrated for low power considerations. Using …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Demonstration Of A Distributed Bragg Reflector For Polyvinylcarbazole And Cadmium Sulfide Layers: Modeling And Comparison To Experimental Results, Javier E. Hasbun, L. Ajith Desilva Jun 2020

Demonstration Of A Distributed Bragg Reflector For Polyvinylcarbazole And Cadmium Sulfide Layers: Modeling And Comparison To Experimental Results, Javier E. Hasbun, L. Ajith Desilva

Georgia Journal of Science

Light wave propagation in a periodically stratified medium has many applications in physics, mathematics, and engineering. The subject is of interest to students, teachers, and researchers, as it presents a great opportunity to focus on principles of optics and to understand the basics of mathematical modeling. A complete theory of wave propagation can be derived using Born’s optics theory. We employed that theory to determine the reflectivity of a one-dimensional distributed Bragg reflector (DBR) and do simulations using MATLAB. A DBR is a photonic crystal consisting of alternating layers of materials with different refractive indices. In this study, we modeled …


Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang Jun 2020

Nanoelectronic Applications Of Magnetoelectric Nanostructures, Ping Wang

FIU Electronic Theses and Dissertations

The greatly increased interest in magnetoelectric materials over the last decade is due to their potential to enable next-generation multifunctional nanostructures required for revolutionizing applications spanning from energy-efficient information processing to medicine. Magnetoelectric nanomaterials offer a unique way to use a voltage to control the electron spin and, reciprocally, to use remotely controlled magnetic fields to access local intrinsic electric fields. The magnetoelectric coefficient is the most critical indicator for the magnetoelectric coupling in these nanostructures. To realize the immense potential of these materials, it is necessary to maximize the coefficient. Therefore, the goal of this PhD thesis study was …


Fabrication Of Nanoscale Columnar Diodes By Glancing Angle Deposition, Jacob D. Weightman May 2020

Fabrication Of Nanoscale Columnar Diodes By Glancing Angle Deposition, Jacob D. Weightman

Macalester Journal of Physics and Astronomy

Glancing angle deposition (GLAD) is a process in which thin films are deposited onto a substrate with obliquely incident vapor together with precisely controlled azimuthal substrate rotation. Ballistic shadowing effects due to the oblique incidence produce nanoscale structures, and a variety of feature shapes, including tilted columns, helices, and vertical columns can be achieved by varying the azimuthal rotation during the deposition process. Due to this control of morphology and the compatibility of the process with a wide variety of materials, GLAD films have found applications in a variety of fields including sensing, photonics, photovoltaics, and catalysis, where they are …


The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng May 2020

The Development Of All Solid-State Optical Cryo-Cooler, Junwei Meng

Optical Science and Engineering ETDs

This dissertation describes the development of an all solid-state optical cryo-cooler. Crystals of 10% wt. ytterbium-doped yttrium lithium fluoride (Yb3+:YLF) are used to cool an infrared HgCdTe sensor payload to an absolute temperature below 135 K, equivalent to delta T equal 138 K below ambient. This record level of cooling is accomplished with a single stage, in a completely vibration-free environment, with a corresponding cooling power of 190 mW. This milestone is made possible by the design and fabrication of an undoped YLF thermal link that efficiently shields the payload with a non-right angle kink from intense anti-Stokes …


Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles May 2020

Optically Pumped Spin Polarization As A Probe Of Many-Body Thermalization, Daniela Pagliero, Pablo R. Zangara, Jacob Henshaw, Ashok Ajoy, Rodolfo H. Acosta, Jeffrey A. Reimer, Alexander Pines, Carlos A. Meriles

Publications and Research

Disorder and many body interactions are known to impact transport and thermalization in competing ways, with the dominance of one or the other giving rise to fundamentally different dynamical phases. Here we investigate the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers. We focus on low-abundance, strongly hyperfine-coupled nuclei, whose role in the polarization transport we expose through the integrated impact of variable radio-frequency excitation on the observable bulk 13C magnetic resonance signal. Unexpectedly, we find good thermal contact throughout the nuclear spin bath, …


Pollution Prevention Via Recovery Of Cerium (Iv) Oxide In Optics Company, Eugene Park, William Gallagher, Sydor Optics, Flint Creek Resources May 2020

Pollution Prevention Via Recovery Of Cerium (Iv) Oxide In Optics Company, Eugene Park, William Gallagher, Sydor Optics, Flint Creek Resources

Articles

Pollution prevention methods were applied at an optics manufacturer in an effort to improve recovery of a valuable polishing component, cerium oxide (ceria), 77% of which was lost to dragout and sewer discharge. Centrifugation and microfiltratiion were evaluated to develop a process that would increase recovery of used ceria, which would then be sent back to the ceria supplier for reclamation and reuse. Full-scale implementation included a high-speed centrifuge that operates continuously with a microfiltration system through recirculation in a single process tank. Sydor Optics has improved ceria recovery from 23% to 48%, saving thousands of dollars annually.


Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman May 2020

Optics Of Two-Dimensional Materials Used As Substrates For Nanoparticle-Based Devices, Reagan Newman

Chancellor’s Honors Program Projects

No abstract provided.


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Morphology And Structure Of Pb Thin Films Grown On Si (111) By Pulsed Laser Deposition, Bektur Abdisatarov Apr 2020

Morphology And Structure Of Pb Thin Films Grown On Si (111) By Pulsed Laser Deposition, Bektur Abdisatarov

Masters Theses & Specialist Projects

Pulsed laser deposition (PLD) is a versatile thin film deposition technique in which high powered laser beam interacts with a target material inside an ultrahigh vacuum chamber. Highly energetic particles such as electrons, atoms, protons, and ions generate a plasma plume that directed towards a substrate material where recondenses form a thin film. PLD is an effective and reliable method to create varieties of thin films such as metal, polymer, and ceramic for many technologically essential applications.

In this study, thin Pb films were grown by pulsed laser deposition on Si (111) at various laser fluences, pulse wavelengths, deposition times, …