Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Materials Science and Engineering

Solution Casting And Mechanical Testing Of Arabinan-Cellulose Nanocomposites, Kevin Su, Alina Lusebrink Jun 2016

Solution Casting And Mechanical Testing Of Arabinan-Cellulose Nanocomposites, Kevin Su, Alina Lusebrink

Materials Engineering

The purpose of this work was to investigate methods to produce consistent, reliable, and testable thin films of arabinan-cellulose nanocomposites. Mechanical properties and composition of the Opuntia ficus-indica cactus spines served as motivation for this research. The high specific strength and stiffness, biodegradability, and sustainability of these spines inspired the creation of composites fabricated from the same materials found in cactus spines: arabinan and nanocrystalline cellulose (NCC). Arabinan serves as the matrix material and NCC as the reinforcement. To explore the feasibility of using a non-toxic solvent, different solution casting techniques with water as a solvent were investigated. Ultrasonication was …


Graphene And Carbon Nanotube Pla Composite Feedstock Development For Fused Deposition Modeling, Austin Plymill, Robert Minneci, Duncan Alexander Greeley, Jack Gritton May 2016

Graphene And Carbon Nanotube Pla Composite Feedstock Development For Fused Deposition Modeling, Austin Plymill, Robert Minneci, Duncan Alexander Greeley, Jack Gritton

Chancellor’s Honors Program Projects

No abstract provided.


Controlling The Assembly Of Nanoparticles In Polymer Blends, Kyle C. Bryson Mar 2016

Controlling The Assembly Of Nanoparticles In Polymer Blends, Kyle C. Bryson

Doctoral Dissertations

While many novel methods have been devised for directing the assembly of nanoparticles in block copolymers, the topic has not reached the same level of sophistication for polymer blends. The assembly of particles at the interface between phase-separated domains can serve as a means to compatibilize polymer blends, reducing domain sizes and enhancing interdomain adhesion by impeding coalescence and decreasing interfacial tension. Compatibilization optimizes the performance of blended materials in applications where the properties of both components must be expressed synergistically, such as in plastics requiring both high strength and high toughness and in photovoltaic films. Thus, approaches to robustly …