Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Science and Engineering

Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan Aug 2022

Biobased Packaging Materials From Cellulose Nanofibrils Produced From Virgin Wood Pulp Or Recycled Cardboard Pulp, Md Ikramul Hasan

Electronic Theses and Dissertations

Self-standing cellulose nanofibril (CNF) films are regarded as one of the promising alternatives to current petroleum-based packaging materials. The mechanical and barrier properties of CNF films are not yet up to the mark for certain applications, especially at high relative humidity. Those properties of CNF films can be tuned by the drying methods of films, degree of fibrillation, cross-linking, and controlled shrinkage. A comprehensive understanding of these processes and their influence on the structure and properties of CNF films have been presented in this thesis.

First, we prepared CNF films from CNF suspensions with two different degrees of fibrillation- standard …


Contact Dewatering Of Cellulose Nanofibers For Biopolymer Composite Applications, Alexander Collins Aug 2022

Contact Dewatering Of Cellulose Nanofibers For Biopolymer Composite Applications, Alexander Collins

Electronic Theses and Dissertations

Cellulose Nanofibrils (CNFs) are promising materials for reinforcement of polymer matrices attributable to their impressive physical and mechanical properties, as well as their biodegradability. However, the utilization of these materials in composites is made challenging by the water content of CNF slurries, the tendency of CNFs to agglomerate as they dry, and incompatibility between hydrophilic CNFs and hydrophobic polymer matrices. The most commercially viable drying methods to produce small-scale dry CNFs, such as spray drying, are very energy intensive, can only dry the materials down to micron-scale agglomerates, and do not preserve fibrillar aspect ratios. “Contact dewatering,” or the removal …