Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Materials Science and Engineering

Electrolyte Optimization Study For Tio2 Nanotube Electrode In Sodium Ion Batteries, Richard Wendel Cutler Dec 2015

Electrolyte Optimization Study For Tio2 Nanotube Electrode In Sodium Ion Batteries, Richard Wendel Cutler

Boise State University Theses and Dissertations

Batteries are ubiquitous in daily life. Sodium-ion batteries have the potential to become inexpensive alternatives to the current market products such as Lithium-ion batteries. TiO2 nanotubes have proven potential as an anode for Na-ion batteries. Electrolytes made by NaClO4 salt and carbonate-based solvents make up commonly used electrolytes in sodium ion battery research. We used electrochemical and physical characterization tests to evaluate the optimum electrolyte for this anode material in the Na system. We determined that the ClO4- ion decomposes at the TiO2 surface and promotes the formation of an unstable solid electrolyte interphase. A …


Kinetic And Thermodynamic Modeling Of Long Term Phase Stability In Alloy 800h Subjected To Lwr Core Conditions, Wayne Ethan Pratt Dec 2015

Kinetic And Thermodynamic Modeling Of Long Term Phase Stability In Alloy 800h Subjected To Lwr Core Conditions, Wayne Ethan Pratt

Masters Theses

An in depth literature review of Incoloy Alloy 800H was conducted and presented to summarize the current understanding of microstructural evolution under irradiation and secondary phase precipitate stability. Due to a lack of radiation induced segregation (RIS) data for Alloy 800H, Isopleth sections varying Cr, Ni, Ti, and Si were generated from a computational thermodynamics approach using ThermoCalc and analyzed to compensate for knowledge related to radiation induced precipitates (RIP’s). These isopleths were analyzed for a composition range based off previous knowledge of RIS tendencies in austenitic stainless steels. Analysis of four major binary phase diagrams and complex phase diagrams …


Development And Improvement Of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators For Radiation Detectors By Codoping, Fang Meng Aug 2015

Development And Improvement Of Cerium Activated Gadolinium Gallium Aluminum Garnets Scintillators For Radiation Detectors By Codoping, Fang Meng

Doctoral Dissertations

Ce doped Gd3Ga3Al2O12 [gadolinium gallium aluminium oxides] is considered as a promising candidate for the next generation Positron Emission Tomography material due to its high light yield in theory. This dissertation is focused on studying the Gd3Ga3Al2O12:Ce crystals by codoping, aiming to improve the light yield and decay time experimentally and understand the underlying mechanism.

The work starts from prescreening appropriate codopants for Gd3Ga3Al2O12:Ce crystals. A cost-effective method is developed to predict the performance of the single crystals by characterizing the radioluminescence intensity and photoluminescence decay of the small polycrystalline pellets. This method is demonstrated by showing that the results …


Mixing Metals For Magic Materials: Analysis Of Binary Eutectic Alloys For Metamaterial Applications, Ethan Elder Fox Aug 2015

Mixing Metals For Magic Materials: Analysis Of Binary Eutectic Alloys For Metamaterial Applications, Ethan Elder Fox

Masters Theses

Uses of metamaterials, also known as negative index materials (NIMs), are wide ranging and include lenses that have a resolution beyond the diffraction limit, incredibly small antenna, and cloaking devices for optical, infrared, and microwave wavelengths.

The unique properties of metamaterials are not found in any naturally occurring material. By having simultaneously negative values for ε [electrical permittivity] and μ [magnetic permeability], a metamaterial can have a negative index of refraction over a certain frequency band. The unique properties of negative index materials emerge chiefly from their highly ordered structure.

Binary eutectic alloys have the potential to be used as …


A High Pressure Cell For Spark Plasma Sintering, Justin Robert Carmichael Aug 2015

A High Pressure Cell For Spark Plasma Sintering, Justin Robert Carmichael

Masters Theses

Many nanostructured materials have been shown to have performance gains strongly dependent on the grain size in the material. Nanostructured thermoelectric materials for instance have found great performance increases through reduction of the grain sizes, due mostly to the scattering of phonons while retaining a good electrical conductivity. Other such examples abound where the grain size plays an important role in the performance of the material, including magnetic materials, proton fuel cell membranes, or simply improving the mechanical properties of a system through the Hall-Petch relationship.

A considerable amount of effort has been applied into reducing the grain size of …


Measuring And Increasing The Suspension Time Of Lanthanide Oxysulfide Particles With Modifiers Via Fluorescence For Use In Anti-Counterfeiting Applications, Joe Dei Rossi, Tyler Dinslage, Tyler Schelling Jun 2015

Measuring And Increasing The Suspension Time Of Lanthanide Oxysulfide Particles With Modifiers Via Fluorescence For Use In Anti-Counterfeiting Applications, Joe Dei Rossi, Tyler Dinslage, Tyler Schelling

Materials Engineering

No abstract provided.


Electrochemical Testing Of Aluminum-Lithium Alloys 2050, 2195, And The Current Aerospace Industry Standard 7075 To Measure The Galvanic Corrosion Behavior With Ti-6al-4v, Trent Duncan, Kevin Knight Jun 2015

Electrochemical Testing Of Aluminum-Lithium Alloys 2050, 2195, And The Current Aerospace Industry Standard 7075 To Measure The Galvanic Corrosion Behavior With Ti-6al-4v, Trent Duncan, Kevin Knight

Materials Engineering

This project aimed to characterize the electrochemical behavior of four different aluminum alloys, and determine how much galvanic corrosion would occur when each alloy was coupled to Ti-6Al-4V. The particular alloys tested were 2050-T3, 2050-T852, 2195-T852, and 7075-T7352. These alloys were tested to determine the effects of aging, and adding lithium, to the corrosion behavior of aluminum alloys. Potentiodynamic polarization curves were generated using the Parstat 2273 potentiostat in accordance with ASTM standard G5, and corrosion analysis software was used to produce Tafel fit lines, which determined the open circuit potential (Ecorr) of each sample. Nine tests were …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow Jun 2015

Self-Contained Breathing Apparatus For Firefighter With A Permanent Stoma, Jason Delgadillo, Aaron Wheeler, Zachary Wishbow

Biomedical Engineering

The purpose of this project was to create a unique SCBA (self-contained breathing apparatus) for a firefighter named Chris Gauer. This prototype consists of a SCBA headgear connected to a polycarbonate-formed stoma mask with a medical-grade sanitary silicone hose.


Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin Jun 2015

Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin

Master's Theses

Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such …


The Experimental And Theoretical Study Of Plasticity Improvement Of Zr-Based Bulk Metallic Glasses, Xie Xie May 2015

The Experimental And Theoretical Study Of Plasticity Improvement Of Zr-Based Bulk Metallic Glasses, Xie Xie

Doctoral Dissertations

Bulk metallic glasses (BMGs) attract more and more attention for their great mechanical properties, such as high strength, good corrosion resistance, etc. However, even though extensive studies have been made, their deformation mechanisms are still not well understood. Their limited plasticity and catastrophic failure after yielding severely prevent their broad applications in industry and daily life. To improve their plasticity, some work has been done through miscellaneous processing methods, e.g., thin-film coating, surface treatment, and ion irradiation. The present work also focuses on the plastic deformation of BMGs, and is expected to deepen the fundamental understanding of the deformation mechanisms …


Engineering The “Pluripotency” Of Zr-Based Bulk Metallic Glasses As Biomedical Materials, Lu Huang May 2015

Engineering The “Pluripotency” Of Zr-Based Bulk Metallic Glasses As Biomedical Materials, Lu Huang

Doctoral Dissertations

Bulk metallic glasses (BMGs) are a family of novel alloys with amorphous microstructures. The combination of their excellent mechanical properties, good chemical stability, high thermal formability, and general biocompatibility has brought up new opportunities for biomaterials. Research in this dissertation was focused on exploring multiple biomedical functionalities of Zr-based BMGs over a wide spectrum, combining materials and biological characterizations, through experimental and computational approaches. Four distinct yet interconnected tasks were endeavored, involving inflammation, hard-tissue implant, soft-tissue prosthesis, and pathogenic infection.

The inflammation that can be potentially triggered by Zr-based BMGs was investigated using macrophages. Lower level or comparable macrophage activations …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Transparent Superhydrophobic Polycarbonate Coating, Gimgun Loi May 2015

Transparent Superhydrophobic Polycarbonate Coating, Gimgun Loi

Masters Theses

Superhydrophobicity is a property commonly seen in nature such as the lotus leaf. This unique property allows the surface of a material to exhibit water repellency and self-cleaning abilities. This effect is contributed by two important components: the rough surface topography and low surface free energy. Since the discovery of this unique property, several methods and various materials have been used to produce this effect and used in a wide variety of applications. However, the use of this type of effect on transparent surfaces is still being researched. I have proposed a method to develop a transparent superhydrophobic coating using …


Characterization Of High-Pressure-Die-Cast Magnesium Alloy Am60, Hooman Baghaei Anaraki Mar 2015

Characterization Of High-Pressure-Die-Cast Magnesium Alloy Am60, Hooman Baghaei Anaraki

Electronic Thesis and Dissertation Repository

The primary goal of this study is the characterization of high pressure die cast magnesium alloys AM60 so that the failure model which is proposed by J.Weiler can be validated for two new castings. The input variables of failure model can be determined by characterization of different regions within the castings. Based on the location of gate system, the desired regions are identified across both castings and tensile specimens are extracted from various regions. Therefore the local mechanical properties are determined, and fracture strain of samples ranges from 1.2 to 9.5%. The area fraction of porosities and skin fraction of …


Nanomechanical And Scaling Behavior Of Nanoporous Gold, Nicolas J. Briot Jan 2015

Nanomechanical And Scaling Behavior Of Nanoporous Gold, Nicolas J. Briot

Theses and Dissertations--Chemical and Materials Engineering

Nanoporous metals have recently been drawn significant interest in various fields of research. Their high surface-to-volume ratio present a strong potential for applications in sensing, catalysis, micro-electromechanical systems (MEMS) and even in the medical field. However, the mechanical properties of nanoporous metals have not yet been well determined, as conducting mechanical tests was found to be challenging. Scaling relations linking the mechanical properties of porous materials to those of their dense counterparts are successfully and widely used for many porous metals. However, their applicability to nanoporous metals have recently been questioned, as estimations from the classic scaling relations were found …


Microindentation Of Bi57in26sn17 Lead-Free Alloy, Ruiting Zhao Jan 2015

Microindentation Of Bi57in26sn17 Lead-Free Alloy, Ruiting Zhao

Theses and Dissertations--Chemical and Materials Engineering

There is great need to understand the mechanical properties of lead-free alloys—an alternative of lead-based alloys—to address the environmental problems associated with the use of lead-based materials in microelectronics. In this work, the microstructures of Bi57In26Sn17 lead-free alloy were examined using Optical Microscopy and Energy Dispersive X-ray Spectroscopy analysis. The micro-indentation technique was used to study the mechanical properties of Bi57In26Sn17 lead-free alloy. The experimental results of the hardness and contact modulus were presented and discussed. Local creep during the indentation was observed from the load-displacement curves. The Vickers hardness (HV) increases with the decrease of the indentation depth, suggesting …


Nanoindentation Of A Zinc Metal Soap Mixture For Use In A Laser Printer, George A. Nimick Jan 2015

Nanoindentation Of A Zinc Metal Soap Mixture For Use In A Laser Printer, George A. Nimick

Theses and Dissertations--Chemical and Materials Engineering

At the start of this project, the possible choices of metal soaps had already been narrowed to include some of the zinc soaps used in this project. These zinc soaps are mixtures of zinc stearate and zinc palmitate of varying ratios purchased from a supplier. Zinc soap was chosen as result of its common use in various industries as a lubricant and mold release, which implied potential benefits in an electrophotographic printing system. These potential benefits include, but are not limited to, a more efficient transfer from a photoconductive drum and protection of the drum from mechanical and chemical degradation. …


Influence Of Calcium Sulfoaluminate Cement On The Pullout Performance Of Reinforcing Fibers: An Evaluation Of The Micro-Mechanical Behavior, Robert B. Jewell Jan 2015

Influence Of Calcium Sulfoaluminate Cement On The Pullout Performance Of Reinforcing Fibers: An Evaluation Of The Micro-Mechanical Behavior, Robert B. Jewell

Theses and Dissertations--Civil Engineering

The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel.

Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement …


Effects Of Magnetic Field On The Shape Memory Behavior Of Single And Polycrystalline Magnetic Shape Memory Alloys, Ali S. Turabi Jan 2015

Effects Of Magnetic Field On The Shape Memory Behavior Of Single And Polycrystalline Magnetic Shape Memory Alloys, Ali S. Turabi

Theses and Dissertations--Mechanical Engineering

Magnetic Shape Memory Alloys (MSMAs) have the unique ability to change their shape within a magnetic field, or in the presence of stress and a change in temperature. MSMAs have been widely investigated in the past decade due to their ability to demonstrate large magnetic field induced strain and higher frequency response than conventional shape memory alloys (SMAs). NiMn-based alloys are the workhorse of metamagnetic shape memory alloys since they are able to exhibit magnetic field induced phase transformation. In these alloys, martensite and austenite phases have different magnetization behavior, such as the parent phase can be ferromagnetic and martensite …


Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian Jan 2015

Shape Memory Behavior Of Single Crystal And Polycrystalline Ni-Rich Nitihf High Temperature Shape Memory Alloys, Sayed M. Saghaian

Theses and Dissertations--Mechanical Engineering

NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing.

Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, …


A Study To Evaluate Non-Uniform Phase Maps In Shape Memory Alloys Using Finite Element Method, Naren Motte Jan 2015

A Study To Evaluate Non-Uniform Phase Maps In Shape Memory Alloys Using Finite Element Method, Naren Motte

Theses and Dissertations

The unique thermo-mechanical behavior of Shape Memory Alloys (SMAs), such as their ability to recover the original shape upon heating or being able to tolerate large deformations without undergoing plastic transformations, makes them a good choice for actuators.

This work studies their application in the aerospace and defense industries where SMA components can serve as release mechanisms for gates of enclosures that have to be deployed remotely. This work provides a novel approach in evaluating the stress and heat induced change of phase in a SMA, in terms of the transformation strain tensor. In particular, the FEA tool

ANSYS has …


Synthesis, Structure, Properties And Applications Of Nanoporous Silicon And Palladium, Xu Jiang Jan 2015

Synthesis, Structure, Properties And Applications Of Nanoporous Silicon And Palladium, Xu Jiang

Theses and Dissertations--Chemical and Materials Engineering

Nanoporous (np) materials with pore size below 100 nano-meters exist naturally in biological and mineral structures, and synthetic np materials have been used industrially for centuries. Np materials have attracted significant research interest in recent decades, as the development of new characterization techniques and nanotechnology allow the observation and design of np materials at a new level. This study focuses on two np materials: nanoporous silicon (np-Si) and nanoporous palladium (np-Pd).

Silicon (Si), because of its high capacity to store lithium (Li), is increasingly becoming an attractive candidate as anode material for Li ion batteries (LIB). One significant problem with …


The Examination Of Stress Corrosion Cracking In High Strength Carbon Steel Through Combined Mechanical-Electrochemical Testing, Jacob Sines Jan 2015

The Examination Of Stress Corrosion Cracking In High Strength Carbon Steel Through Combined Mechanical-Electrochemical Testing, Jacob Sines

Williams Honors College, Honors Research Projects

Through the analysis of materials and environments seen in industry a better understanding of the fundamentals behind degradation mechanisms can be observed. The scope of this project was to better understand the fundamentals behind the degradation of high strength pipeline steels in a lab setting to simulate an environment seen in industry. Specifically the degradation mechanisms of high and nearly neutral pH stress corrosion cracking were examined in environments that simulated oil and gas pipelines buried in soil. Experimentation was carried out utilizing X65 carbon steel specimen, a Gamry potentiostat, a CORTEST proof ring, a CORTEST slow strain rate machine, …


Increasing Efficiency Of Thermal Desalination, Jarrod A. Edwards, Mackinzie Washington, Chan Jung, Ben Garrison Jan 2015

Increasing Efficiency Of Thermal Desalination, Jarrod A. Edwards, Mackinzie Washington, Chan Jung, Ben Garrison

Chancellor’s Honors Program Projects

No abstract provided.