Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Materials Science and Engineering

Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant Dec 2014

Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant

Doctoral Dissertations

Single carbon fibers are studied using a nano-tensile testing system. This system has unprecedented load and displacement resolution, nN and nm respectively, and the ability to perform dynamic testing for storage and loss modulus during quasi-static tensile extension. Furthermore, improved fiber mounting and alignment procedures coupled with the precision of the nano-tensile testing system assist in unprecedented resolution in single fiber mechanical testing for axial modulus and strength. Hence, using these unique capabilities, the moduli and their statistical distribution of many high performance carbon fibers are reported here. From this, a simplified single parameter model describing the strain dependent modulus …


Investigation Of Fatigue Life And Fracture Mechanics Of Unconstrained Ni-Mn-Ga Single Crystals, Theodore Bryson Lawrence Dec 2014

Investigation Of Fatigue Life And Fracture Mechanics Of Unconstrained Ni-Mn-Ga Single Crystals, Theodore Bryson Lawrence

Boise State University Theses and Dissertations

Ni-Mn-Ga is a magnetic shape memory alloy (MSMA) that exhibits large recoverable strains. The magnetic field induced strain (MFIS) occurs through twin boundary motion resulting in reorientation of the crystal structure, which is coupled to the magnetic moment of the material. The shape memory capabilities of the material make it promising for applications including microactuators, sensors, microfluid pumps, refrigeration, energy harvesting, and data storage.

In order for Ni-Mn-Ga to become a viable option for use in commercial applications the performance and reliability must be on par with industry standards. Ni‑Mn-Ga has been shown to achieve high cycles at low strains, …


Reverse Engineering Of Reciprocating Saw, Nicholas Alexander Cavopol, Candice Kinsler, Carly Jania, Joseph Richard Creekmore Dec 2014

Reverse Engineering Of Reciprocating Saw, Nicholas Alexander Cavopol, Candice Kinsler, Carly Jania, Joseph Richard Creekmore

Chancellor’s Honors Program Projects

No abstract provided.


Early-Age Hydration Studies Of Portland Cement, Fengjuan Liu Dec 2014

Early-Age Hydration Studies Of Portland Cement, Fengjuan Liu

Electronic Theses and Dissertations

Our current knowledge on cement hydration during setting is based on the discrete observation of hydrated paste. An advanced micro/nano-level technique which can perform the in-situ observation on the continuous hydration of cement paste is demanded. In this study, Raman spectroscopy (RS) was chosen as such a method to continuously investigate wet pastes. The objective of this research is to explore the hydration process and microstructural development of fresh pastes with this technique. This research was conducted in three phases. First, the RS analysis was used to continuously observe the cement hydration from 20 minutes after mixing to 9 hours. …


Fabrication Of 3d Ultrafine Fibrous Protein Structures Via Freeze-Drying, Yiling Huang Nov 2014

Fabrication Of 3d Ultrafine Fibrous Protein Structures Via Freeze-Drying, Yiling Huang

Department of Textiles, Merchandising, and Fashion Design: Dissertations, Theses, and Student Research

In this thesis, ultrafine fibrous 3D matrices were fabricated using three different proteins (soy protein, wool keratin, and chicken feather keratin) via freeze-drying. Protein matrices are preferable for tissue engineering compared to matrices made from synthetic material because of their similarity to native extracellular matrices. Due to their cell-binding motifs, natural proteins are also recognized as more biocompatible compared. Freeze-drying, which is a simple method used to produce 3D sponge matrices, was employed in this study to fabricate 3D fibrous matrices in a controlled manner. The inner structures of the 3D matrices fabricated ranged from film to fibers, and the …


Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi Aug 2014

Surface Modification Of Aluminum Alloys By Plasma Electrolytic Oxidation, Vahid Dehnavi

Electronic Thesis and Dissertation Repository

Plasma Electrolytic Oxidation (PEO) is a surface treatment for the production of ceramic oxide coatings with great properties, such as high wear and corrosion resistance, on metal substrates, particularly aluminum and magnesium alloys. Formation of PEO coatings involves complex processes and mechanisms that are difficult to study. Currently, the PEO process is in a transition phase from research to commercial application, with a primary focus on the corrosion and wear protection of light alloys, and has recently generated interest as a promising surface treatment for biomedical applications.

To justify the industrial application of PEO, a more systematic and in-depth study …


Surfactant Assisted Dispersion Of Single-Walled Carbon Nanotubes In Polyvinylpyrrolidone Solutions, Tennison Yu Aug 2014

Surfactant Assisted Dispersion Of Single-Walled Carbon Nanotubes In Polyvinylpyrrolidone Solutions, Tennison Yu

Electronic Thesis and Dissertation Repository

Obtaining stable aqueous dispersions is one of the main challenges hindering a widespread and effective use of single-walled carbon nanotubes (SWNT) in many applications. Although it has been recognized that their versatility makes them an extremely attractive material, the unique molecular structure that gives SWNTs their unmatched electronic, mechanical, and thermal properties is also responsible for strong van der Waals interactions. This, combined with extremely high aspect ratios and flexibility, causes SWNTs to adhere strongly into tightly bundled ropes. In these bundles, SWNTs are not as useful as their linearized unbundled equivalents. Thus, in order to take advantage of their …


Monte Carlo Modeling Of Ion Beam Induced Secondary Electrons, Uk Huh Aug 2014

Monte Carlo Modeling Of Ion Beam Induced Secondary Electrons, Uk Huh

Doctoral Dissertations

Modeling ion beam induced secondary electron (iSE) production within matter for simulating ion beam induced images has been studied. When the complex nature of ion beam interactions with matter is account for, a detailed quantitative model of the ion interactions with matter, Monte Carlo simulation will be the best choice to be able to compute and predict iSE yields faster and more accurately. In order to build Monte Carlo simulation software incorporated with a reliable database of stopping power tables, for wide variety of range of materials, there have been numerous attempts to experimentally measure ion stopping power tables and …


Fabrication And Characterization Of Cu-Co Alloy Nanoparticles Via Pulsed Laser Dewetting, Shaofang Fu Aug 2014

Fabrication And Characterization Of Cu-Co Alloy Nanoparticles Via Pulsed Laser Dewetting, Shaofang Fu

Masters Theses

The fabrication and characterization of Cu[Copper]-Co[Cobalt] alloy nanoparticles are addressed in this thesis. First, Cu-Co alloy thin films with total thickness of ~10 nm [nanometer] were deposited on both 100 nm SiO2 [silicon dioxide] coated silicon wafers and quartz substrates using RF magnetron sputtering system. Three structures were studied in this work: (1) ~10 nm co-sputtered Cu-Co alloy thin film. (2) ~5 nm (at center) Cu thin film covered by ~5 nm (at center) Co thin film. (3) ~5 nm (at center) Co thin film covered by ~5 nm (at center) Cu thin film. In addition, ~10 nm pure …


Low Temperature Thermally Activated Cvd Of Silicon On Molybdenum For Oxidation Protection, Brian C. Jolly Aug 2014

Low Temperature Thermally Activated Cvd Of Silicon On Molybdenum For Oxidation Protection, Brian C. Jolly

Masters Theses

The United States Global Threat Reeducation Initiative (GTRI) is promoting the production of molybdenum-99 without the use of uranium-235. One possible route, called neutron capture technology, is through the activation of molybdenum-98 via irradiation. GE-Hitachi has identified a location within their boiling water reactors for molybdenum-98 irradiation, but the elevated temperatures present risk oxidizing the molybdenum. This work explored using a silicon coating to protect the molybdenum from oxidation. With silane gas as the precursor, chemical vapor deposition was employed to produce the silicon coating. Characterization was performed and showed a discrete silicon layer was deposited with little to no …


Material Composition And Toxicology Of Cosmetic Products, Hilda Gonzalez Jun 2014

Material Composition And Toxicology Of Cosmetic Products, Hilda Gonzalez

Materials Engineering

In today’s modern society, the U.S. Food and Drug Administration regulates many industries to protect consumers’ health; the cosmetics industry is not one of them. Through self-regulation, companies continue to sell products for topical use on the body that have been known to contain toxic chemicals with little to no testing on the effects they have on the human body. The purpose of this project was to determine the content of such known toxins in five different brands of face powders. X-Ray Diffraction (XRD) was used to verify the primary component and Inductively Coupled Plasma-Optical Emissions Spectroscopy (ICP-OES) was used …


Prediction Of Tribological Behavior Of Candidate Materials For Rotor Seals, John W. Franzino, Will F. Michul Jun 2014

Prediction Of Tribological Behavior Of Candidate Materials For Rotor Seals, John W. Franzino, Will F. Michul

Materials Engineering

To reduce high costs associated with manufacturing and testing materials for rotor seals, a procedure needs to be developed to quickly and accurately test candidate materials as they are released. The test should reduce the amount of fabrication required and model working conditions in order to accurately assess the tribological behavior of candidate materials. A possible solution was examined that utilized a rig meant to model operational stresses and wear. Compression modulus data was then taken in order to quantify the accumulation of damage due to microcracking, the primary mode of failure, through a damage index parameter. Testing results concluded …


Development Of Low Temperature, Aqueous Synthesis Method Of Lead Sulfide Quantum Dots, Albert Nakao, Colin Yee Jun 2014

Development Of Low Temperature, Aqueous Synthesis Method Of Lead Sulfide Quantum Dots, Albert Nakao, Colin Yee

Materials Engineering

Quantum dots have become an active area of research in the past decade due to their unique properties. Quantum confinement effects allow for efficient spectral conversion and size tunable fluorescence and absorption peaks. Near infrared spectral converting lead sulfide quantum dots have potential applications in solar power, biological imaging and communications technology. However at Cal Poly, lead sulfide dots have not been synthesized. The quantum dot synthesis currently adapted at Cal Poly encompasses organometallic precursors at high reaction temperatures, producing cadmium selenium dots. The organometallic approach has been found to produce nanocrystals with high quality photoluminescence, but due to its …


Electrochemical Characterization Of Precious Metal Braze Alloys Using Potentiodynamic Polarization, Maxwell Glen Martin, Mason Gregory Morgan, Matthew David Vance Jun 2014

Electrochemical Characterization Of Precious Metal Braze Alloys Using Potentiodynamic Polarization, Maxwell Glen Martin, Mason Gregory Morgan, Matthew David Vance

Materials Engineering

This study aimed to characterize the electrochemical behavior of six precious metal braze alloys by performing potentiodynamic polarization tests (ParStat 2273) based on ASTM Specifications G5 and G59. To determine the extent to which the alloys will contribute to galvanic corrosion in a marine environment (3.5 wt% NaCl), corrosion analysis software was used to produce fitted Tafel lines to determine the open circuit potential, Voc, for each alloy. The Voc values for the alloys were found to be -66.58 mV for Gold ABA, 13.01 mV for Nicoro®, -39.00 mV for Nioro®, 23.4 mV …


An Investigation Into The Properties And Fabrication Methods Of Thermoplastic Composites, Ann E. Livingston-Peters Jun 2014

An Investigation Into The Properties And Fabrication Methods Of Thermoplastic Composites, Ann E. Livingston-Peters

Master's Theses

As applications for thermoplastic composites increase, the understanding of their properties become more important. Fabrication methods for thermoplastic composites continually improve to match designs specifications. These advanced thermoplastics have begun to show an improvement in mechanical properties over those found in thermoset composites commonly used in industry. Polyaryletherketones (PEK) have high service temperatures, good mechanical properties, and improved processing capabilities compared to thermoplastics used in the past making them important to the aerospace industry. The wide range of types of PEK make them suitable for a variety of applications, but selection of specific chemistries, processing parameters, and composite stack-ups determine …


Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes Jun 2014

Developent Of A Phospholipid Encapsulation Process For Quantum Dots To Be Used In Biologic Applications, Logan Grimes

Master's Theses

The American Cancer Society predicts that 1,665,540 people will be diagnosed with cancer, and 585,720 people will die from cancer in 2014. One of the most common types of cancer in the United States is skin cancer. Melanoma alone is predicted to account for 10,000 of the cancer related deaths in 2014. As a highly mobile and aggressive form of cancer, melanoma is difficult to fight once it has metastasized through the body. Early detection in such varieties of cancer is critical in improving survival rates in afflicted patients. Present methods of detection rely on visual examination of suspicious regions …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …


Synthesis And Characterization Of Magnetic Nanowires Prepared By Chemical Vapor Deposition, Siwei Tang May 2014

Synthesis And Characterization Of Magnetic Nanowires Prepared By Chemical Vapor Deposition, Siwei Tang

Doctoral Dissertations

Various metal silicide and germanide magnetic nanowires were synthesized using a home-built CVD [chemical vapor deposition] system. The morphology, composition, and magnetic properties of the nanowires were studied and correlated with growth parameters such as temperature, pressure, time, and source-substrate distance.

One of the compositions targeted for synthesis was MnSi [manganese silicide]. In bulk, this material orders helimagnetically at Tc [curie temperature] = 30K, with a helical pitch of about 20 nm. After extensive study, we learned that the thickness of the silicon dioxide layer on the substrate is a critical parameter for the growth of MnSi nanowires. An …


Structural Analysis Of The Tablerock Thrust Sheet, Grandfather Mountain Window, Northwestern North Carolina: Emplacement Kinematics Of A Large Horse In A Major Thrust System, Ann Elizabeth Walker May 2014

Structural Analysis Of The Tablerock Thrust Sheet, Grandfather Mountain Window, Northwestern North Carolina: Emplacement Kinematics Of A Large Horse In A Major Thrust System, Ann Elizabeth Walker

Masters Theses

The Tablerock thrust sheet is exposed along the southwestern margin of Grandfather Mountain window in northwestern North Carolina, where it separates basement and cover rocks inside the window from basement thrust sheets of the overriding Blue Ridge-Piedmont megathrust sheet. It is a complex of footwall-derived horses of rifted-margin metasedimentary rocks, including Neoproterozoic to Early Cambrian Chilhowee Group quartzite and phyllite, and Shady Dolomite. Penetrative deformation throughout the Tablerock thrust sheet is defined by an extensively transposed foliation, and strong colinearity between well developed transport lineations and SE/NW-trending tight, isoclinal, and sheath folds. Centimeter- to meter-scale sheath folds are common throughout …


Cnt Membrane Platforms For Transdermal Drug Delivery And Aptamer Modulated Transport, Tao Chen Jan 2014

Cnt Membrane Platforms For Transdermal Drug Delivery And Aptamer Modulated Transport, Tao Chen

Theses and Dissertations--Chemical and Materials Engineering

CNT membrane platforms are biomimetic polymeric membranes imbedded with carbon nanotubes which show fast fluid flow, electric conductivity, and the ability to be grafted with chemistry. A novel micro-dialysis probe nicotine concentration sampling technique was proposed and proved in vitro, which could greatly improve the efficiency and accuracy of future animal transdermal studies. To enhance the scope of transdermal drug delivery which was limited to passive diffusion of small, potent lipophilic drugs, a wire mesh lateral electroporation design was also proposed which could periodically disrupt the skin barrier and enhance drug flux.

It was shown that AMP binding aptamer …


Microstructure And Work Function Of Dispenser Cathode Coatings: Effects On Thermionic Emission, Phillip D. Swartzentruber Jan 2014

Microstructure And Work Function Of Dispenser Cathode Coatings: Effects On Thermionic Emission, Phillip D. Swartzentruber

Theses and Dissertations--Chemical and Materials Engineering

Dispenser cathodes emit electrons through thermionic emission and are a critical component of space-based and telecommunication devices. The emission of electrons is enhanced when coated with a refractory metal such as osmium (Os), osmium-ruthenium (Os-Ru), or iridium (Ir). In this work the microstructure, thermionic emission, and work function of thin film Os-Ru coatings were studied in order to relate microstructural properties and thermionic emission.

Os-Ru thin film coatings were prepared through magnetron sputtering and substrate biasing to produce films with an array of preferred orientations, or texture. The effect of texture on thermionic emission was studied in detail through closely-spaced …


Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu Jan 2014

Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu

Electronic Theses and Dissertations

Polymer matrix composites reinforced with either E glass or ECR glass fibers-reinforced are used in a variety of high voltage electrical applications because of their advantages like lower weight and cost. However, they can be damaged by aggressive in-service conditions such as high temperature, ultraviolet radiation, moisture, ozone and corrosive environments. Different degradation mechanisms can develop in high voltage PMCs under those extreme environments, which, in turn, can affect the long term structural durability of the composites. A set of PMCs reinforced with ECR-glass and E-glass fibers embedded in four different resins has been investigated in this study. In addition, …


Precise Control Of Carbon Nanotube Membrane Structure For Enzyme Mimetic Catalysis, Nicholas W. Linck Jan 2014

Precise Control Of Carbon Nanotube Membrane Structure For Enzyme Mimetic Catalysis, Nicholas W. Linck

Theses and Dissertations--Chemical and Materials Engineering

The ability to fabricate a charge-driven water pump is a crucial step toward mimicking the catalytic ability of natural enzyme systems. The first step towards making this water pump a reality is the ability to make a carbon nanotube (CNT) membrane with uniform, 0.8 nm pore diameter. Proposed in this work is a method for synthesizing these carbon nanotubes via VPI-5 zeolite templated, transition metal catalyzed pyrolysis. Using a membrane composed of these CNTs, it is possible to get water molecules to flow single file at a high flow rate, and to orient them in such a way that would …


Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann Jan 2014

Magnesium-Titanium Alloys For Biomedical Applications, Ilona Hoffmann

Theses and Dissertations--Chemical and Materials Engineering

Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium.

Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy …