Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Materials Science and Engineering

Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan May 2022

Enhancing Stability Of High-Nickel Cathodes For Lithium-Ion Batteries Through Additive Manufacturing Of Cathode Structure, Matthew Sullivan

Mechanical Engineering Undergraduate Honors Theses

Lithium-ion batteries (LIBs) are currently the best method to store electrical energy for use in portable electronics and electronic vehicles. New cathode materials for LIBs are consistently studied and researched, but few are as promising and attainable as nickel-rich transition metal oxides such as LiNi1-x-yMnxCoyO2 (NMC). NMC materials exist with many different mass ratios, but higher nickel content materials provide higher energy density. With this increase in capacity comes a sacrifice with cyclability, as high-nickel NMC variants are prone to structure collapse, transition metal dissolution, and cracks due to volume change. In this report, mechanical modification of the electrode by …


Structure And Deformation Of Carbyne Deposited On A Nickel Substrate, Abigail Eaton May 2020

Structure And Deformation Of Carbyne Deposited On A Nickel Substrate, Abigail Eaton

Mechanical Engineering Undergraduate Honors Theses

Carbyne is a nanomaterial of great interest due to its ability to withstand high forces similarly to other carbon allotropes such as graphene or carbon nanotubes. However, it is currently difficult to synthesize and maintain without the assistance of a composite material substrate that the carbyne can be integrated with, which will affect its reaction to varying conditions. This thesis focuses on studying the effects of carbyne on a nickel surface and its mechanical properties to predict its future usages and potential for applications in varying fields. We perform a three-point bending test simulation using molecular dynamics with pure Ni …


Sub-/Surface Evaluation Of Industry-Grade Endodontic File Micro-/Nanoscale Structures And Low-Cost, Low-Energy Methods Of Rapidly Annealing And Nitriding Titanium, Nicholas Broadbent May 2020

Sub-/Surface Evaluation Of Industry-Grade Endodontic File Micro-/Nanoscale Structures And Low-Cost, Low-Energy Methods Of Rapidly Annealing And Nitriding Titanium, Nicholas Broadbent

Mechanical Engineering Undergraduate Honors Theses

Because of their unique mechanical properties, shape memory capabilities and biocompatibility, Nickel-titanium alloys are frequently used in the medical industry for a variety of applications including endodontic files. Until now, the performance of industry-standard endodontic files has been characterized by this alloying property and a limited set of macroscale surface structures and features. In this work, High Resolution Transmission Electron Microscopy (HRTEM), Low Resolution Transmission Electron Microscopy (LRTEM), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Spectroscopy (EDX) analyses are conducted at both the surface and sub-surface levels of a wide selection of industry-grade endodontic files currently offered on the …


Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz May 2020

Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz

Mechanical Engineering Undergraduate Honors Theses

Thermal management of electronic devices has become an increasingly vital field of study with the rapid miniaturization of many key electrical components. With the significant improvement of semiconductor manufacturing and intensified focus on interconnects, electronic devices have decreased in size at an incredible rate. Decreasing spatial requirements is essential to improving device capabilities as the electronic system is able to incorporate more components. Currently, electronic systems are drastically limited by the capabilities of their cooling mechanisms. Smaller devices lead to large increases in the energy density of the system and require more powerful cooling systems to maintain proper component operating …


Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn May 2019

Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn

Mechanical Engineering Undergraduate Honors Theses

Infections associated with biofilm growth are usually challenging to eradicate due to their high tolerance toward antibiotics [11, 12]. Biofilms often form on the inert surfaces of medically implanted devices [13]. No matter the sophistication, microbial infections can develop on all medical devices and tissue engineering constructs [12]. Related infections lead to 2 million cases annually in the U.S., costing the healthcare system over $5 billion in additional healthcare expenses [12].

Novel solutions to biofilm’s microbial colonization span the spectrum of engineering and science disciplines. Yet a practical solution still does not exist. The research presented here will explore a …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston Dec 2018

Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston

Mechanical Engineering Undergraduate Honors Theses

Throughout the process of steel making, certain grades of steel are a higher risk for defects caused by the inability to quickly diffuse hydrogen through the steel when cooled to room temperature at a normal rate based on the ambient air temperature. To reduce the hydrogen flaking defects that are caused due to hydrogen entrapment in the steel, the process of slow cooling is utilized. This process reduces the cooling rate of steel bars by keeping them at a higher temperature for extended periods and in turn gives the hydrogen a chance to fully dissipate from the steel. In many …