Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Materials Science and Engineering

Thermodynamic Investigation Of Yttria-Stabilized Zirconia (Ysz) System, Mohammad Asadikiya Nov 2017

Thermodynamic Investigation Of Yttria-Stabilized Zirconia (Ysz) System, Mohammad Asadikiya

FIU Electronic Theses and Dissertations

The yttria-stabilized zirconia (YSZ) system has been extensively studied because of its critical applications, like solid oxide fuel cells (SOFCs), oxygen sensors, and jet engines. However, there are still important questions that need to be answered and significant thermodynamic information that needs to be provided for this system. There is no predictive tool for the ionic conductivity of the cubic-YSZ (c-YSZ), as an electrolyte in SOFCs. In addition, no quantitative diagram is available regarding the oxygen ion mobility in c-YSZ, which is highly effective on its ionic conductivity. Moreover, there is no applicable phase stability diagram for the nano-YSZ, which …


Development Of Novel, Microscale Fracture Toughness Testing For Adhesives, Dillon S. Watring Jun 2017

Development Of Novel, Microscale Fracture Toughness Testing For Adhesives, Dillon S. Watring

FIU Electronic Theses and Dissertations

The purpose of this thesis was to develop microscale fracture toughness tests to be performed in situ based off previously used macroscale fracture toughness tests. The thesis also was to use these tests to perform in situ analysis and imaging of reinforced adhesives during crack propagation. Two different fracture toughness tests were developed for this thesis through developing fixtures and sample geometry. A microscale double cantilever beam (DCB) test was developed for mode I fracture (opening mode). A microscale end notch flexure (ENF) test was developed for mode II fracture (sliding mode).

Three different types of materials were used as …


Nano-Confined Metal Oxide In Carbon Nanotube Composite Electrodes For Lithium Ion Batteries, Alexandra J. Henriques Mar 2017

Nano-Confined Metal Oxide In Carbon Nanotube Composite Electrodes For Lithium Ion Batteries, Alexandra J. Henriques

FIU Electronic Theses and Dissertations

Lithium ion batteries (LIB) are one of the most commercially significant secondary batteries, but in order to continue improving the devices that rely on this form of energy storage, it is necessary to optimize their components. One common problem with anode materials that hinders their performance is volumetric expansion during cycling. One of the methods studied to resolve this issue is the confinement of metal oxides with the interest of improving the longevity of their performance with cycling. Confinement of metal oxide nanoparticles within carbon nanotubes has shown to improve the performance of these anode materials versus unconfined metal oxides. …


Deposition Of Copper Nanoparticles On 2d Graphene Nanoplatelets Via Cementation Process, Luiza Da Fontoura Mar 2017

Deposition Of Copper Nanoparticles On 2d Graphene Nanoplatelets Via Cementation Process, Luiza Da Fontoura

FIU Electronic Theses and Dissertations

The main goal of this thesis is to deposit metal particles on the surface of 2D nanoplatelets using a controlled cementation process. As a proof of concept, copper (Cu) and Graphene Nanoplatelets (GNP) were chosen as the representative metal and 2D nanoplatelets, respectively. Specific goals of this study include depositing nanometer scale Cu particles on the surface of GNP at a low concentration (approximately 5 vol.%) while maintaining clustering and impurities at a minimum. Parametric studies were done to attain these goals by investigating various metallic reducer types and morphologies, GNP surface activation process, acid volume % and copper (II) …