Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Materials Science and Engineering

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels May 2023

The Study Of Corrosion On Additive-Manufactured Metals., Braydan Daniels

Electronic Theses and Dissertations

The purpose of this study was to investigate and compare the corrosion mechanisms between wrought and additive-manufactured (3D-printed) copper and stainless steel. The experimental procedure consisted of measuring the open circuit potential, electrochemical impedance spectroscopy, linear sweep voltammetry, Tafel analysis, surface topology, and scanning electron microscopy for each metal within salt water, tap water, sulfuric acid, and synthetic body fluid (excluding copper in synthetic body fluid).

Overall, printed stainless steel was more corrosion-resistant than wrought stainless steel in tap water and synthetic body fluid based on OCP, LSV, and surface topology results. Additionally, printed copper was more corrosion-resistant than wrought …


Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock May 2022

Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock

Electronic Theses and Dissertations

This work focuses on evaluating different modeling approaches and model parameters for thermoplastic AM, with the goal of informing more efficient and effective modeling approaches. First, different modeling approaches were tested and compared to experiments. From this it was found that all three of the modeling approaches provide comparable results and provide similar results to experiments. Then one of the modeling approaches was tested on large scale geometries, and it was found that the model results matched experiments closely. Then the effect of different material properties was evaluated, this was done by performing a fractional factorial design of experiments where …


Impact Resistance Of Fiber-Reinforced Composites Using Computational Simulations, Maitham Alabbad May 2020

Impact Resistance Of Fiber-Reinforced Composites Using Computational Simulations, Maitham Alabbad

Electronic Theses and Dissertations

Composite materials are widely used in aerospace, automotive and wind power industries due to their high strength-to-weight and stiffness-to-weight ratios and their improved mechanical properties compared to metals. The damage resistance of composite materials due to low velocity impact depends on fiber breakage, matrix cracking and delamination between the interfaces. In this research, a numerical investigation of low velocity impact response of a multidirectional symmetric carbon-epoxy composite laminate is carried out and presented. Two different finite element models are developed for composite laminates made of non-crimp fabric to investigate their behavior under different levels of impact energy. In the first …


Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold Aug 2018

Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold

Electronic Theses and Dissertations

Additive Manufacturing (AM) with metals has been accomplished mainly through powder bed fusion processes. Initial experiments and simulations using Material Extrusion Additive Manufacturing (MEAM) have been performed by various researchers especially using low melting alloys. Recently Stratasys Inc. submitted a patent application for the use of their Material Extrusion technology also called Fused Deposition Modeling (FDM) where they describe the process using thixotropic semi-solid alloys. Currently this process using semi-solid, engineering type alloys such as A356 or THIXALLOY 540 aluminum have not been researched to evaluate the control parameters. This research combines the in-depth knowledge of applying thixotropic semi-solid aluminum …


Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli May 2018

Ultrasonic Nondestructive Evaluation Of Metal Additive Manufacturing., Venkata Karthik Nadimpalli

Electronic Theses and Dissertations

Metal Additive Manufacturing (AM) is increasingly being used to make functional components. One of the barriers for AM components to become mainstream is the difficulty to certify them. AM components can have widely different properties based on process parameters. Improving an AM processes requires an understanding of process-structure-property correlations, which can be gathered in-situ and post-process through nondestructive and destructive methods. In this study, two metal AM processes were studied, the first is Ultrasonic Additive Manufacturing (UAM) and the second is Laser Powder Bed Fusion (L-PBF). The typical problems with UAM components are inter-layer and inter-track defects. To improve the …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …