Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 105

Full-Text Articles in Materials Science and Engineering

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio Dec 2015

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio

Nebraska Center for Energy Sciences Research: Publications

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case …


Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao Dec 2015

Modeling And Simulation Of Micro Electrical Discharge Machining Process, Bai Shao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Micro parts and systems are playing crucial roles in the area of semiconductor, biomedical device, micro fluid devices, automotive, aerospace and so forth. Micro manufacturing is one of the most important technologies in realizing miniaturization. Compared to other micro manufacturing methods, micro-EDM is drawing lots of attention due to its ability to machine complex 3D parts regardless of the hardness of the workpiece material.

Micro-EDM is the cumulative result of numerous single discharges; therefore, it is crucial to understand the single discharge material removal process in micro-EDM. However, due to the stochastic nature and complex process mechanism, micro-EDM, including its …


Independency Of Elasticity On Residual Stress Of Room Temperature Rolled Stainless Steel 304 Plates For Structure Materials, Parikin Parikin, David Allen Dec 2015

Independency Of Elasticity On Residual Stress Of Room Temperature Rolled Stainless Steel 304 Plates For Structure Materials, Parikin Parikin, David Allen

Makara Journal of Technology

Mechanical strengths of materials are widely expected in general constructions of any building. These properties depend on its formation (cold/hot forming) during fabrication. This research was carried out on cold-rolled stainless steel (SS) 304 plates, which were deformed to 0, 34, 84, and 152% reduction in thickness. The tests were conducted using Vickers method. Ultra micro indentation system (UMIS) 2000 was used to determine the mechanical properties of the material, i.e.: hardness, modulus elasticity, and residual stresses. The microstructures showed lengthening outcropping due to stress corrosion cracking for all specimens. It was found that the tensile residual stress in a …


Effect Of Fly Ash Fortification In The Manufacture Process Of Making Concrete Towards Characteristics Of Concrete In Sulfuric Acid Solution, Asep Handaya Saputra, Muhammad Shohibi, Masatoshi Kubouchi Dec 2015

Effect Of Fly Ash Fortification In The Manufacture Process Of Making Concrete Towards Characteristics Of Concrete In Sulfuric Acid Solution, Asep Handaya Saputra, Muhammad Shohibi, Masatoshi Kubouchi

Makara Journal of Technology

Fly ash is a silica or alumino silica material that can be used as a constituent of cement in the concrete manufacturing process. Utilization of fly ash aims to improve durability and minimize the reduction of concrete’s compressive strength exposed to an acidic environment, which can be achieved through the pozzolanic reaction of fly ash with Ca(OH)2 within concrete. The reduced content of Ca(OH)2 through pozzolanic reaction will minimize the tendency of ettringite formation (compounds that cause deterioration and decrease the compressive strength of concrete). In order to determine the relation between fly ash replenishment into concrete with concrete’s characteristics …


Improvement Of Quality Of Carica Papaya L. With Clove Oil As Preservative In Edible Coating Technology, Eny Kusrini, Anwar Usman, Chrispine Deksita Wisakanti, Rita Arbianti, Dedy Alharis Nasution Dec 2015

Improvement Of Quality Of Carica Papaya L. With Clove Oil As Preservative In Edible Coating Technology, Eny Kusrini, Anwar Usman, Chrispine Deksita Wisakanti, Rita Arbianti, Dedy Alharis Nasution

Makara Journal of Technology

We have studied utilization of essential clove oil, extracted from clove buds by hydrodistillation, as preservative in edible packaging technology. Preservative of essential clove oil was applied on chopped papaya fruits by using two methods, namely spray and brush. The effects of concentration of clove oil from 0.05 to 0.20% on the preservation of papaya fruits (Carica papaya L.) at room temperature (25 °C) were also evaluated. Physicochemical and in vitro microbiological activities on the papaya fruits that were stored at 25 oC and 85-90% relative humidity were investigated in details. The results indicate that the clove oil at concentration …


Oxidation Process Of H 2 O /Uv For Cod Reduction Of Wastewater From Soybean Tofu Production, Komala Pontas, Abrar Muslim Dec 2015

Oxidation Process Of H 2 O /Uv For Cod Reduction Of Wastewater From Soybean Tofu Production, Komala Pontas, Abrar Muslim

Makara Journal of Technology

Chemical Oxygen Demand (COD) reduction of wastewater from soybean tofu production was studied by conducting advanced oxidation process (AOP) using hydrogen peroxide with UV radiation catalysts in a closed cylindrical glass reactor. The hydroxyl radical (*OH) concentration from H2O2 decomposition was modeled, and exponential trends were found for the *OH concentration over radiation time and operation temperature. As a result, it was found that the maximal *OH concentration was 0.209 mol L-1 at 240 minutes and 50 °C. The *OH concentration exponentially increased following rise in operation temperature. The H2O2/UV AOP application reduced COD concentration to approximately 42.41% from 10,545 …


Improving Renewable Energy Transition Acceptance: A Simulation Gaming Approach On A Multi Actor Setting In The Netherlands, Aziiz Sutrisno, Jac A. M. Vennix, Noor Syaifudin Dec 2015

Improving Renewable Energy Transition Acceptance: A Simulation Gaming Approach On A Multi Actor Setting In The Netherlands, Aziiz Sutrisno, Jac A. M. Vennix, Noor Syaifudin

Makara Journal of Technology

The Netherlands have tried very hard to increase their renewable energy sources (RES) shares to fulfill the European Union target in 2050. However, RES performance did not show the expected result as the performance declined in 2009 producing even wider gap compare to the target. The Dutch government’s tried to incorporate all interested stakeholders by forming the Dutch energy transition task force. Nevertheless, the task force’s result is also not showing a desirable trend. Key reasons behind the Dutch low RES performance are the lack of shared understanding and positive attitude toward RES development among interested actors. This research uses …


Calibration Of Numerical Model For Shoreline Change Prediction Using Satellite Imagery Data, Sigit Sutikno, Keisuke Murakami, Dwi Puspo Handoyo, Manyuk Fauzi Dec 2015

Calibration Of Numerical Model For Shoreline Change Prediction Using Satellite Imagery Data, Sigit Sutikno, Keisuke Murakami, Dwi Puspo Handoyo, Manyuk Fauzi

Makara Journal of Technology

This paper presents a method for calibration of numerical model for shoreline change prediction using satellite imagery data in muddy beach. Tanjung Motong beach, a muddy beach that is suffered high abrasion in Rangsang Island, Riau province, Indonesia was picked as study area. The primary numerical modeling tool used in this research was GENESIS (GENEralized Model for Simulating Shoreline change), which has been successfully applied in many case studies of shoreline change phenomena on a sandy beach.The model was calibrated using two extracted coastlines satellite imagery data, such as Landsat-5 TM and Landsat-8 OLI/TIRS. The extracted coastline data were analyzed …


Uplift Of Shoreline Regions On Pagai Island Due To The September 12, 2007 Mw 8.4 Earthquake Captured By Sar Image, Ashar Muda Lubis Dec 2015

Uplift Of Shoreline Regions On Pagai Island Due To The September 12, 2007 Mw 8.4 Earthquake Captured By Sar Image, Ashar Muda Lubis

Makara Journal of Technology

At least 25 people were killed by the September 12, 2007 Mw 8.4 Bengkulu earthquake, and many buildings were destroyed in Bengkulu and West Sumatra provinces. It is very important to estimate the earth surface deformation due to the earthquake to understand the rupture size and its process. The aim of this research is to estimate the shoreline change and vertical displacement on Pagai Island associated with the September 12, 2007 Mw 8.4 Bengkulu earthquake. The intensity of ALOS-PALSAR satellite images is used to access the pattern of displacement. The result shows that Pagai Island demonstrated huge uplift due to …


Dual-Band Singly-Fed Proximity-Coupled Tip-Truncated Triangular Patch Array For Land Vehicle Mobile System, Basari Basari, Josaphat Tetuko Sri Sumantyo Dec 2015

Dual-Band Singly-Fed Proximity-Coupled Tip-Truncated Triangular Patch Array For Land Vehicle Mobile System, Basari Basari, Josaphat Tetuko Sri Sumantyo

Makara Journal of Technology

This paper proposes a dual-band left-handed circularly polarized triangular-patch array that is developed for land vehicle mobile system aimed at mobile satellite communications. The array consists of six tip-truncated triangular patches, which the first three patches are used for reception and the second three patches are used for transmission purpose. Each of three-patches has a beam pattern that can be switched in three different 120°-coverage beam in azimuth-cut plane at a minimum targeted gain at a desired elevation angle. The targeted minimum gain of the array is 5 dBic, in order for data communications with a large geostationary satellite can …


Comparative Estimates Of Anthropogenic Heat Emission In Relation To Surface Energy Balance Of A Subtropical Urban Neighborhood, Changhyoun Park, Gunnar W. Schade, Nicholas D. Werner, David J. Sailor, Cheolhee Kim Dec 2015

Comparative Estimates Of Anthropogenic Heat Emission In Relation To Surface Energy Balance Of A Subtropical Urban Neighborhood, Changhyoun Park, Gunnar W. Schade, Nicholas D. Werner, David J. Sailor, Cheolhee Kim

Mechanical and Materials Engineering Faculty Publications and Presentations

Long-term eddy covariance measurements have been conducted in a subtropical urban area, an older neighborhood north of downtown Houston. The measured net radiation (Q*), sensible heat flux (H) and latent heat flux (LE) showed typical seasonal diurnal variations in urban areas: highest in summer; lowest in winter. From an analysis of a subset of the first two years of measurements, we find that approximately 42% of Q* is converted into H, and 22% into LE during daytime. The local anthropogenic heat emissions were estimated conventionally using the long-term residual method and the heat emission inventory approach. We also …


Microstructure Alone Induced Wetting Transition From Hydrophilic To Hydrophobic On Silicon And Graphene, Henry L. Ems Dec 2015

Microstructure Alone Induced Wetting Transition From Hydrophilic To Hydrophobic On Silicon And Graphene, Henry L. Ems

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

In the present work, transition from hydrophilic to hydrophobic wetting states for an intrinsically hydrophilic surface (contact angle less than 45 degrees) using only surface microstructuring is presented. The surface microstructures are re-entrant microcavities (inverted trapezoidal microstructures) which promote air entrapment below the water droplet causing a Cassie wetting state as opposed to a Wenzel state where the surface is completely wetted. The microstructures were fabricated on a Silicon-On-Insulator (SOI) wafer through steps of deposition, photolithography, etching, and bonding. Contact angle measurements demonstrated the ability of the microfabricated surfaces to sustain large contact angles above 100°, in comparison to a …


Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock Dec 2015

Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock

Master's Theses

Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from …


An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy Dec 2015

An Approach To Model Plastic Deformation Of Metallic Plates In Hypervelocity Impact Experiments, Shawoon Kumar Roy

UNLV Theses, Dissertations, Professional Papers, and Capstones

Space structures are subjected to micro-meteorite impact at extremely high velocities of several kilometers per second. Similarly, design of military equipment requires understanding of material behavior under extremely high pressure and temperature. Study of material behavior under hypervelocity impact (HVI) poses many challenges since few researchers so far have approached this problem. Material models, equations of the state, and fracture mechanics are not well understood under these conditions.

The objective of this research is to present an approach for studying plastic deformation of metallic plates under HVI conditions. A two-stage light gas gun can be used to simulate these conditions …


Effect Of Nano-Oxide Particle Size On Radiation Resistance Of Ironechromium Alloys, Weizong Xu, Lulu Li, James A. Valdez, Mostafa Saber, Yuntian Zhu, Carl C. Koch, Ronald O. Scattergood Nov 2015

Effect Of Nano-Oxide Particle Size On Radiation Resistance Of Ironechromium Alloys, Weizong Xu, Lulu Li, James A. Valdez, Mostafa Saber, Yuntian Zhu, Carl C. Koch, Ronald O. Scattergood

Mechanical and Materials Engineering Faculty Publications and Presentations

Radiation resistance of Fe-14Cr alloys under 200 keV He irradiation at 500 ­*C was systematically investigated with varying sizes of nano oxide Zr, Hf and Cr particles. It is found that these nano oxide particles acted as effective sites for He bubble formation. By statistically analyzing 700-1500 He bubbles at the depth of about 150-700 nm from a series of HRTEM images for each sample, we established the variation of average He bubble size, He bubble density, and swelling percentage along the depth, and found them to be consistent with the He concentration profile calculated from the SIRM program. Oxide …


Novel Ternary Magnesium-Tin Alloys By Microalloying, Sadegh Behdad Oct 2015

Novel Ternary Magnesium-Tin Alloys By Microalloying, Sadegh Behdad

FIU Electronic Theses and Dissertations

The objective of this research was to explore the possibility of developing novel Magnesium-Tin alloys with improved mechanical properties by micro-alloying. Magnesium is the lightest of all structural metals. It can be machined faster and with almost half the power required for aluminum. There is a limitless supply of magnesium in sea water and it can also be recycled at 5% of initial energy requirements. These properties make magnesium an ideal green alternative to replace metals and polymers in automotive, aerospace, biomedical and defense sectors. The potential weight reduction in the US automotive market alone, leads to 100 billion gallons …


Measuring Polydimethylsiloxane (Pdms) Mechanical Properties Using Flat Punch Nanoindentation Focusing On Obtaining Full Contact, Federico De Paoli Oct 2015

Measuring Polydimethylsiloxane (Pdms) Mechanical Properties Using Flat Punch Nanoindentation Focusing On Obtaining Full Contact, Federico De Paoli

USF Tampa Graduate Theses and Dissertations

In this research, the materials used were the Polydimethylsiloxane (PDMS) polymers. PDMS mechanicals properties were measured using a customized version of the nanoindentation test using a flat punch tip. The method is proposed in Chapter 3 and it is used to calculate the elastic modulus of different PDMS samples. The samples tested were both produced specifically for this research and available in the laboratory’s storage. They all present different levels of cross-linking degree.

It is quite common to not have full contact between the cylindrical flat punch and the sample because of the unavoidable tilt. The new method guarantees establishing …


The Effect Of A Reversible Shear Transformation On Plastic Deformation Of An Amorphous Solid, Nikolai V. Priezjev Sep 2015

The Effect Of A Reversible Shear Transformation On Plastic Deformation Of An Amorphous Solid, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

Molecular dynamics simulations are performed to investigate the plastic response of a model glass to a local shear transformation in a quiescent system. The deformation of the material is induced by a spherical inclusion that is gradually strained into an ellipsoid of the same volume and then reverted back into the sphere. We show that the number of cage-breaking events increases with increasing strain amplitude of the shear transformation. The results of numerical simulations indicate that the density of cage jumps is larger in the cases of weak damping or slow shear transformation. Remarkably, we also found that, for a …


Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker Sep 2015

Ductility And Use Of Titanium Alloy And Stainless Steel Aerospace Fasteners, Jarrod Talbott Whittaker

USF Tampa Graduate Theses and Dissertations

The main purpose of this thesis is to investigate the ductility and application of titanium alloys, like titanium 6Al-4V, when used in aerospace fasteners compared to more conventional stainless steel aerospace fasteners such as A286. There have been concerns raised about the safe usability of titanium 6-4 in the aerospace industry due to its lack of strain hardening. However, there is a lack of data pertaining to this concern of safe usage which this thesis aims to address. Tensile tests were conducted to find the ductility indexes of these fasteners which quantify the amount of plastic to elastic elongation. From …


Long-Term Stability Of 14yt-4sc Alloy At High Temperature, Lulu Li, Weizong Xu, Mostafa Saber, Yuntian Zhu, Carl C. Koch, Ronald O. Scattergood Sep 2015

Long-Term Stability Of 14yt-4sc Alloy At High Temperature, Lulu Li, Weizong Xu, Mostafa Saber, Yuntian Zhu, Carl C. Koch, Ronald O. Scattergood

Mechanical and Materials Engineering Faculty Publications and Presentations

14YT alloy (Fe-14Cr-0.25wt.%Y2O3-0.4wt.%Ti) with 4 at.% Sc addition was previously reported to exhibit a nanoscale microstructure and high strength when annealed at temperatures up to 1000 °C (0.65Tm) for 1 hour. Here we report that the microstructure and mechanical behavior of 14YT-4Sc alloy after long-term annealing for up to 60 hours at 1000 °C. FIB analysis shows abnormal grain growth with annealing time, while a large fraction of the matrix still consists of nanoscale grains. TEM images reveal a slight growth of nano grains, with estimated grain growth exponent, n, to be 0.29. Sc-Ti-Y-O enriched nano oxide particles (nm) were …


A Computational Study On Extension Of Non-Contact Modulation Calorimetry, Xiao Ye Aug 2015

A Computational Study On Extension Of Non-Contact Modulation Calorimetry, Xiao Ye

Doctoral Dissertations

ABSTRACT A COMPUTATIONAL STUDY ON EXTENSION OF NON-CONTACT MODULATION CALORIMETRY May 2015 XIAO YE B.S., SOUTHEAST UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST Ph. D., UNIVERSITY OF MASSACHUSETTS, AMHERST Directed by: Professor Robert W. Hyers Accurate thermophysical properties of high temperature metallic liquids are important for both industrial applications and scientific research. For the former, as predictive numerical simulations play an increasingly important role in pivotal industries, such as casting, welding and sintering, the lack of precise thermophysical properties, especially at high temperatures, hamper their further applications. On the other hand, from the stand point of basic metals physics, being able …


Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu Aug 2015

Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu

Md Mahmudur Rahman

No abstract provided.


Freeform Extrusion Fabrication Of Titanium Fiber Reinforced Bioactive Glass Scaffolds, Albin Thomas, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas Aug 2015

Freeform Extrusion Fabrication Of Titanium Fiber Reinforced Bioactive Glass Scaffolds, Albin Thomas, Krishna C. R. Kolan, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Although implants made with bioactive glass have shown promising results for bone repair, their application in repairing load-bearing long bones is limited due to their low fracture toughness and fairly fast degradation response in vivo. In this paper, we describe our investigation of freeform extrusion fabrication of silicate based 13-93 bioactive glass scaffolds reinforced with titanium fibers. A composite paste was prepared with 13-93 bioactive glass filled with titanium fibers (~16 µm in diameter and aspect ratio of ~250) having a volume fraction of 0.4 vol. %. This paste was then extruded to fabricate scaffolds with an extrudate diameter …


Effects Of Temperature On Aqueous Freeform Extrusion Fabrication, Jie Li, Ming-Chuan Leu, Greg Hilmas Aug 2015

Effects Of Temperature On Aqueous Freeform Extrusion Fabrication, Jie Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An experimental study was conducted to investigate the effect of temperature on ceramic parts produced by paste extrusion based additive manufacturing followed by sintering. A computer-controlled gantry system equipped with a piston extruder was used to extrude aqueous alumina paste. The system includes a temperature control subsystem that allows for freeform extrusion fabrication inside a low-temperature (<0°C) chamber. It can also be used for fabricating parts on a hot plate at ambient or higher temperatures (≥20°C). Test specimens were fabricated from aqueous aluminum pastes at -20°C in the low-temperature chamber and also on the hot plate at 40°C. The minimum angles achievable by these two processes for part fabrication, without use of support material, were compared. Also compared were the relative density and mechanical properties of the parts obtained after sintering. Microstructures were examined via scanning electron microscopy in order to obtain a deeper understanding of the effect of fabrication temperature.


Laser Metal Deposition Of Functionally Gradient Materials From Elemental Copper And Nickel Powders, Sreekar Karnati, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer Aug 2015

Laser Metal Deposition Of Functionally Gradient Materials From Elemental Copper And Nickel Powders, Sreekar Karnati, Todd E. Sparks, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This work deals with the planning and fabrication of a functionally gradient copper-nickel composition via Laser Metal Deposition (LMD). Various compositions of copper and nickel were made by blending different weight percentages which were then sequentially deposited to fabricate functionally gradient copper-nickel thin-wall structures. Analyses were performed by sectioning the thin-wall samples for metallographic, hardness, X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) studies. The fabrication was studied for identifying and corroborating the deposited compositions and their corresponding gradients. XRD analyses were performed to identify the crystal structure of the deposit. EDS analysis was instrumental in identifying the variation …


Microstructure And Property Of Tib-Reinforced Ti Alloy Composites By Laser Metal Deposition, Yunlu Zhang, Jingwei Zhang, Frank W. Liou, Joseph William Newkirk Aug 2015

Microstructure And Property Of Tib-Reinforced Ti Alloy Composites By Laser Metal Deposition, Yunlu Zhang, Jingwei Zhang, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

TiB-reinforced Ti alloy composites have been laser deposited with pre-alloyed Ti-6Al4V-1B powder. The microstructure of the as-deposited and heat treated composites have been characterized in detail using scanning electron microscope (SEM). A homogeneous dispersion of needle-like TiB precipitates is formed in the Ti-6Al-4V α/β matrix. TiB precipitates promote formation of small near equaxed α/β grain after β annealing process. The micro-hardness of the laser deposited composites increase 20-30% with 5 vol. % TiB precipitates compared to unreinforced Ti-6Al-4V deposits.


A Microstructure And Hardness Study Of Functionally Graded Materials Ti6al4v/Tic By Laser Metal Deposition, Jingwei Zhang, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer Aug 2015

A Microstructure And Hardness Study Of Functionally Graded Materials Ti6al4v/Tic By Laser Metal Deposition, Jingwei Zhang, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk, Karen M. Brown Taminger, William J. Seufzer

Materials Science and Engineering Faculty Research & Creative Works

Crack free functionally graded material (FGM) Ti6Al4V-TiC has been fabricated by laser metal deposition (LMD) using TiC and Ti6Al4V powder which were premixed for different ratios. This study focuses on the influence of laser processing parameters and TiC compositional distribution on microstructure, Vickers hardness and phase. The microstructure is analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness tests. Primary carbide, eutectic carbide and unmelted carbide are found in the deposit area. When laser power increased, the primary and secondary dendrite arm spacing increased. The laser power and scanning speed did not influence the Vickers hardness distribution significantly.


Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski Aug 2015

Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photovoltaic (PV) cells are rapidly growing as a renewable alternative to fossil fuels like coal, oil, and natural gas. However, greater adoption has also reduced government subsidies, placing the onus of making solar panels economically competitive on innovative research. While multiple methods have been considered for reducing costs, with each reduction in cost comes the associated peril of reduction in quality and useful lifetime. Several problems considered solved have now resurfaced as potential failure mechanisms with the introduction of cheaper PV cell technologies. However, to remain economically viable, PV modules will not only have to become cheaper, they will have …


Towards An Optical In-Line Characterization Of Nano Petals, Yiming Ding, Huisung Kim, Euiwon Bae Aug 2015

Towards An Optical In-Line Characterization Of Nano Petals, Yiming Ding, Huisung Kim, Euiwon Bae

The Summer Undergraduate Research Fellowship (SURF) Symposium

Carbon Nano Petals (i.e. CNPs) are cantilevered multilayer grapheme sheets that are seeded from core graphite fibers. The resulting structure offers a possibility of minimizing interfacial losses in transport application, improved interactions with surrounding matrix materials in composites, and a route toward substrate independence for device applications. The mass production of CNPs on the substrate required a method that can provide synchronous feedback on the sample status without pulling them out of the production line. Different optical properties can be observed when surfaces with different roughness are illuminated with a highly coherent light such as a laser beam. Similarly, CNPs …


Characterization Of Hydrogel Curing Methods For Manufacturability, Hannah E. Brown, Rebecca K. Kramer, Edward L. White Aug 2015

Characterization Of Hydrogel Curing Methods For Manufacturability, Hannah E. Brown, Rebecca K. Kramer, Edward L. White

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the field of soft robotics, hydrogels possess material properties that allow them to function as both soft strain sensors and dielectric elastomer actuators. However, there is still much that needs to be understood about the curing process of hydrogels and the resulting material characteristics before manufacturing these devices can be accomplished. In this study, we investigated the effect of curing time and sample volume on the as-cured material properties of acrylamide-based hydrogels hydrated with lithium and magnesium chloride salt solutions. Samples were cured at room temperature, 60° C and 100° C, and the resulting changes in mechanical stiffness and …