Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Materials Science and Engineering

Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore Nov 2018

Creating A Computational Tool To Simulate Vibration Control For Piezoelectric Devices, Ahmet Ozkan Ozer, Emma J. Moore

Posters-at-the-Capitol

Piezoelectric materials have the unique ability to convert electrical energy to mechanical vibrations and vice versa. This project takes a stab to develop a reliable computational tool to simulate the vibration control of a novel “partial differential equation” model for a piezoelectric device, which is designed by integrating electric conducting piezoelectric layers constraining a viscoelastic layer to provide an active and lightweight intelligent structure. Controlling unwanted vibrations on piezoelectric devices (or harvesting energy from ambient vibrations) through piezoelectric layers has been the major focus in cutting-edge engineering applications such as ultrasonic welders and inchworms. The corresponding mathematical models for piezoelectric …


Improving Sheet Molding Compound, Zebulon G. Mcreynolds Sep 2018

Improving Sheet Molding Compound, Zebulon G. Mcreynolds

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Zebulon McReynolds

An important attribute of the compression molding process is the requirement of (Sheet Molding Compound) SMC. The fibers, commonly glass or carbon fibers, are impregnated with thermoset resin and collected in continuous form on a conveyor belt. The SMC charge is rolled between rollers to wet out the fibers with resin. The SMC charge is then compression molded to a desired part reflecting the designed mold. The part could be an automotive part or any other industrial applicable part. Compression molding with fibers and polymers is the largest component of most of the manufacturing industries in the world. …


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Reliability Of Lead-Free Solder Joints Under Combined Shear And Compressive Loads, Ian Bernander, Travis Dale, Yuvraj Singh, Ganesh Subbarayan Aug 2018

Reliability Of Lead-Free Solder Joints Under Combined Shear And Compressive Loads, Ian Bernander, Travis Dale, Yuvraj Singh, Ganesh Subbarayan

The Summer Undergraduate Research Fellowship (SURF) Symposium

In electronic assemblies, solder joints are used to create electrical connections, remove heat, and mechanically support the components. When an electronic device is powered on, the solder joints and the board they are attached to heat up, expanding at different rates. Due to the difference in expansion, shear stress is imposed on the solder joints. As the device is powered on and off, this shear stress can eventually fracture the solder joint, causing the device to fail. Therefore, to increase the lifespan of electronics, it is important to investigate the mechanical properties of solder alloys. The present study investigates how …


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks Jun 2018

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge …