Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Materials Science and Engineering

Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane May 2017

Controlled Synthesis And Utilization Of Metal And Oxide Hybrid Nanoparticles, Cameron Cowgur Crane

Graduate Theses and Dissertations

This dissertation reports the development of synthetic methods concerning rationally-designed, hybrid, and multifunctional nanomaterials. These methods are based on a wet chemical, solution phase approach that utilizes the knowledge of synthetic organic and inorganic chemistry to generate building blocks in solution for the growth of nanocrystals and hybrid nanostructures. This work builds on the prior knowledge of shape-controlled synthesis of noble metal nanocrystals and expands into the challenging realm of the more reactive first row transition metals. Specifically, a microemulsion sol-gel method was developed to synthesize Au-SiO2 dimers as precursors for the synthesis of segmented heterostructures of noble metals that …


Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams Jan 2017

Synthesis, Characterization, And Enhanced Magnetic Properties Of Iron Carbide Nanomaterials, Brent M. Williams

Theses and Dissertations

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet …


Recent Progresses In Molybdenum-Based Electrocatalysts For The Hydrogen Evolution Reaction, Ze-Xing Wu, Jie Wang, Jun-Po Guo, Jing Zhu, De-Li Wang Apr 2016

Recent Progresses In Molybdenum-Based Electrocatalysts For The Hydrogen Evolution Reaction, Ze-Xing Wu, Jie Wang, Jun-Po Guo, Jing Zhu, De-Li Wang

Journal of Electrochemistry

Electrochemical catalytic production of hydrogen has been considered as a promising and sustainable strategy for clean and renewable energy technologies. Molybdenum-based non noble metal catalysts for the hydrogen evolution reaction have attracted extensive attention due to its effective catalytic performance. In this review, the recent progresses in molybdenum-carbide, phosphide, nitride and sulfide electrocatalysts are presented. In addition, the strategies to improve the catalytic performance are analyzed and the prospects for the future development trends are expected.


Pulse Electrodeposition Of Pd-Ni Alloy Nanoparticles For Electrocatalytic Oxidation Of Formic Acid, Fang-Zu Yang, Jun-Pei Yue, Zhong-Qun Tian, Shao-Min Zhou Feb 2014

Pulse Electrodeposition Of Pd-Ni Alloy Nanoparticles For Electrocatalytic Oxidation Of Formic Acid, Fang-Zu Yang, Jun-Pei Yue, Zhong-Qun Tian, Shao-Min Zhou

Journal of Electrochemistry

The Pd-Ni alloy nanoparticles with nickel atomic contents of 12.0%, 16.4% and 22.6% were successfully electrodeposited from a Pd-Ni alloy electrolyte by square wave pulse plating. The alloy nanoparticles were in the spherical shape with a diameter of 50 ~ 80 nm. As the growth potential of the alloy was negatively shifted, the nickel content of the alloy was increased, and the size of the nanoparticles was almost the same, whereas the number, the degree of crosslinking and the real active area of the nanoparticles were increased. As the nickel content of the alloy nanoparticles increased, the peak current for …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Photoelectrochemical Properties Of Tio_2 Nanoparticles, Jie Qu, Ying Li, Qi-Wei Jiang, Xue-Ping Gao Feb 2009

Photoelectrochemical Properties Of Tio_2 Nanoparticles, Jie Qu, Ying Li, Qi-Wei Jiang, Xue-Ping Gao

Journal of Electrochemistry

The protonated titanate nanoparticles were obtained at room temperature and subsequently calcined at different temperatures(300 ℃,400 ℃,500 ℃,600 ℃ and 700 ℃) in air.The obtained products were characterized by XRD,TEM and UV-Vis.It is found that the grain sizes of TiO2 nanoparticles calcined at 300 ℃ were about 20 nm,and increased gradually with the temperature rise.Photoelectric performance was measured with I~V curve and electrochemical impedance spectroscopy(EIS).The TiO2 nanoparticles obtained at 500 ℃ showed the best photoelectrochemical properties with a photovoltaic conversion efficiency of 6.39%,which is much higher than those at other temperatures.In addition,it is also demonstrated that the charge transfer resistance …


Electrodeposition Of Nano-Sb-Zn Alloy In Acetamide-Urea-Nabr-Kbr Melt, Peng Liu, Xin-Ai Guo, Ye-Xiang Tong, Qi-Qin Yang Aug 2006

Electrodeposition Of Nano-Sb-Zn Alloy In Acetamide-Urea-Nabr-Kbr Melt, Peng Liu, Xin-Ai Guo, Ye-Xiang Tong, Qi-Qin Yang

Journal of Electrochemistry

The electroreduction of Zn(II) and Sb(III) in acetamide-urea-NaBr-KBr(343 K) were studied by cyclic volatmmetry.The reduction of Zn(II) or Sb(III) to the metals is an irreversible process.The transfer coefficient of Zn(II)+2e→Zn and Sb(III) +3e→Sb were calculated to be 0.231 and 0.319,the diffusion coefficient of Zn(II) and Sb(III) in the melt were determined as 1.70 10~(-6) and 3.21 10~(-6) cm~(2)· s~(-1) respectively.The Zn-Sb films with different Zn content from 29.67 at% to 97.34 at% were electrodeposited in acetamide-urea-NaBr-KBr melt at 343 K by controlling the deposition potential and the Zn(II)/Sb(III) molar ratio.The morphology of Zn-Sb film was observed by SEM.Zn-Sb film comprises …