Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Materials Science and Engineering

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague Aug 2015

Biodegradable Nano-Hybrid Polymer Composite Networks For Regulating Cellular Behavior, Charles Henley Sprague

Masters Theses

Photo-crosslinkable polymeric biomaterials have emerged in the field of biomedical research to promote tissue regeneration. For example, scaffolds that can be crosslinked and hardened in situ have been known to make suitable implant alternatives. Since injectable and photo-crosslinkable biomaterials offer the advantage of being minimally invasive, they have emerged to compete with autografts, a current highly invasive method to repair diseased tissue. A series of novel photo-crosslinkable, injectable, and biodegradable nano-hybrid polymers consisting of poly(ε-caprolactone fumarate) (PCLF) and polyhedral oligomeric silsesquioxane (POSS) has been synthesized in our laboratory via polycondensation. To engineer the material properties of the nano-hybrid networks, varied …


Study On Hydrogen Bubble Template Fabrication Of Porous Biomaterials Coatings By Electrochemically Induced Deposition, Hui Wang, Chang-Jian Lin, Ren Hu, Ke-Qin Zhang, Hong-Ping Duan, Xiang Dong Dec 2013

Study On Hydrogen Bubble Template Fabrication Of Porous Biomaterials Coatings By Electrochemically Induced Deposition, Hui Wang, Chang-Jian Lin, Ren Hu, Ke-Qin Zhang, Hong-Ping Duan, Xiang Dong

Journal of Electrochemistry

So far, the pore architecture in biomaterials plays a critical role on the cell response and integration between the biomaterials and implanted environment. In this study, porous calcium phosphate (CaP) coatings and CaP/protein composite coatings have been successfully constructed on titanium substrate by using an electrochemically induced deposition technique. The shape, size and pliability of CaP crystals are controlled by electrolyte concentration, temperature, current density, time and protein additive in preparing process. In addition, the formation mechanism of the porous structure is discussed based on the “hydrogen bubble template” model. It demonstrates that the growth velocity of CaP crystals should …