Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Materials Science and Engineering

Cellulose-Specific Type B Carbohydrate Binding Modules: Understanding Oligomeric And Non-Crystalline Substrate Recognition Mechanisms, Abhishek A. Kognole, Christina M. Payne Nov 2018

Cellulose-Specific Type B Carbohydrate Binding Modules: Understanding Oligomeric And Non-Crystalline Substrate Recognition Mechanisms, Abhishek A. Kognole, Christina M. Payne

Chemical and Materials Engineering Faculty Publications

Background: Effective enzymatic degradation of crystalline polysaccharides requires a synergistic cocktail of hydrolytic enzymes tailored to the wide-ranging degree of substrate crystallinity. To accomplish this type of targeted carbohydrate recognition, nature produces multi-modular enzymes, having at least one catalytic domain appended to one or more carbohydrate binding modules (CBMs). The Type B CBM categorization encompasses several families (i.e., protein folds) of CBMs that are generally thought to selectively bind oligomeric polysaccharides; however, a subset of cellulose-specific CBM families (17 and 28) appear to bind non-crystalline cellulose more tightly than oligomers and in a manner that discriminates between surface topology.

Results: …


Micronutrient Availability In Alternative Foods During Agricultural Catastrophes, David C. Denkenberger, Joshua M. Pearce Oct 2018

Micronutrient Availability In Alternative Foods During Agricultural Catastrophes, David C. Denkenberger, Joshua M. Pearce

Department of Materials Science and Engineering Publications

Several catastrophes could block the sun, including asteroid/comet impact, super volcanic eruption, and nuclear war with the burning of cities (nuclear winter). Previous work has analyzed alternate food supplies (e.g., mushrooms growing on dead trees, bacteria growing on natural gas). This was shown to be technically capable of feeding everyone with macronutrients (protein, carbohydrates, and lipids) and minerals, although economics and politics remain uncertain. The present work analyzes vitamin availability in such alternative food scenarios. The vitamin content of various alternate foods is compared to the US recommended daily allowance (RDA) as well as the average requirement defined by the …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Correlation Of Structure, Function And Protein Dynamics In Gh7 Cellobiohydrolases From Trichoderma Atroviride, T. Reesei And T. Harzianum, Anna S. Borisova, Elena V. Eneyskaya, Suvamay Jana, Silke F. Badino, Jeppe Kari, Antonella Amore, Magnus Karlsson, Henrik Hansson, Mats Sandgren, Michael E. Himmel, Peter Westh, Christina M. Payne, Anna A. Kulminskaya, Jerry Ståhlberg Jan 2018

Correlation Of Structure, Function And Protein Dynamics In Gh7 Cellobiohydrolases From Trichoderma Atroviride, T. Reesei And T. Harzianum, Anna S. Borisova, Elena V. Eneyskaya, Suvamay Jana, Silke F. Badino, Jeppe Kari, Antonella Amore, Magnus Karlsson, Henrik Hansson, Mats Sandgren, Michael E. Himmel, Peter Westh, Christina M. Payne, Anna A. Kulminskaya, Jerry Ståhlberg

Chemical and Materials Engineering Faculty Publications

Background: The ascomycete fungus Trichoderma reesei is the predominant source of enzymes for industrial conversion of lignocellulose. Its glycoside hydrolase family 7 cellobiohydrolase (GH7 CBH) TreCel7A constitutes nearly half of the enzyme cocktail by weight and is the major workhorse in the cellulose hydrolysis process. The orthologs from Trichoderma atroviride (TatCel7A) and Trichoderma harzianum (ThaCel7A) show high sequence identity with TreCel7A, ~ 80%, and represent naturally evolved combinations of cellulose-binding tunnel-enclosing loop motifs, which have been suggested to influence intrinsic cellobiohydrolase properties, such as endo-initiation, processivity, and off-rate.

Results: The TatCel7A, ThaCel7A, …


Enhanced Hot Electron Lifetimes In Quantum Wells With Inhibited Phonon Coupling, Hamidreza Esmaielpour, Vincent R. Whiteside, Herath P. Piyathilaka, Sangeetha Vijeyaragunathan, Bin Wang, Echo Adcock-Smith, Kenneth P. Roberts, Tetsuya D. Mishima, Michael B. Santos, Alan D. Bristow, Ian R. Sellers Jan 2018

Enhanced Hot Electron Lifetimes In Quantum Wells With Inhibited Phonon Coupling, Hamidreza Esmaielpour, Vincent R. Whiteside, Herath P. Piyathilaka, Sangeetha Vijeyaragunathan, Bin Wang, Echo Adcock-Smith, Kenneth P. Roberts, Tetsuya D. Mishima, Michael B. Santos, Alan D. Bristow, Ian R. Sellers

Faculty & Staff Scholarship

Hot electrons established by the absorption of high-energy photons typically thermalize on a picosecond time scale in a semiconductor, dissipating energy via various phonon-mediated relaxation pathways. Here it is shown that a strong hot carrier distribution can be produced using a type-II quantum well structure. In such systems it is shown that the dominant hot carrier thermalization process is limited by the radiative recombination lifetime of electrons with reduced wavefunction overlap with holes. It is proposed that the subsequent reabsorption of acoustic and optical phonons is facilitated by a mismatch in phonon dispersions at the InAs-AlAsSb interface and serves to …