Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Materials Science and Engineering

Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz May 2024

Design And Optimization Of A Novel Monolithic Spring For High-Frequency Press-Pack Sic Fet Modules, Bogac Canbaz

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Silicon Carbide (SiC) Field-Effect Transistor (FET) modules lead the way in power electronics, being superior in efficiency and robustness for high-frequency applications. The shift towards SiC from traditional silicon (Si)-based devices is driven by its superior thermal conductivity, higher electric field strength, and operational efficiency at elevated temperatures. These features are critical for the development of next-generation, grid-oriented power converters aimed at enhancing the reliability and sustainability of power systems. This research focuses on high-frequency press-pack (HFPP) SiC FET modules, addressing the primary challenge of miniaturizing SiC FET dies without compromising performance, through an innovative press-contact design essential for increased …


A Brief Bibliometric Survey On Circularly Polarized Antennas For Mobile Communication, Aniket Gunjal, Abhaya Pal Singh Aug 2020

A Brief Bibliometric Survey On Circularly Polarized Antennas For Mobile Communication, Aniket Gunjal, Abhaya Pal Singh

Library Philosophy and Practice (e-journal)

This paper presents a database review on “Circularly Polarized Antennas for Mobile Communication” as it is the emerging technique used by mobile service provider because of having benefits over other types of antennas available.The polarization purity is now the major issue. In some cases due to cross polarization issue the antenna signal is cancelled at receiver side.So, it is necessary to have circularly polarized antenna to avoid this polarization issue because of change in phase of signal. The change in phase of signal is due to striking of wave on the obstacles and it slightly tilted from its direction causes …


Femtosecond Photon-Mediated Plasma Enhances Photosynthesis Of Plasmonic Nanostructures And Their Sers Applications, Peng Ran, Lan Jiang, Xin Li, Bo Li, Pei Zuo, Yongfeng Lu Jan 2019

Femtosecond Photon-Mediated Plasma Enhances Photosynthesis Of Plasmonic Nanostructures And Their Sers Applications, Peng Ran, Lan Jiang, Xin Li, Bo Li, Pei Zuo, Yongfeng Lu

Department of Electrical and Computer Engineering: Faculty Publications

Laser ablation in liquid has proven to be a universal and green method to synthesize nanocrystals and fabricate functional nanostructures. This study demonstrates the superiority of femtosecond laser-mediated plasma in enhancing photoredox of metal cations for controllable fabrication of plasmonic nanostructures in liquid. Through employing upstream high energetic plasma during laser-induced microexplosions, single/three-electron photoreduction of metallic cations can readily occur without chemical reductants or capping agents. Experimental evidences demonstrate that this process exhibits higher photon utilization efficiency in yield of colloidal metal nanoparticles than direct irradiation of metallic precursors. Photogenerated hydrated electrons derived from strong ionization of silicon and water …


Tunable Plasmonic Resonances In Highly Porous Nano-Bamboo Si-Au Superlattice-Type Thin Films, Ufuk Kılıç, Alyssa Mock, René Feder, Derek Sekora, Matthew J. Hilfiker, Rafal Korlacki, Eva Schubert, Christos Argyropoulos, Mathias Schubert Jul 2018

Tunable Plasmonic Resonances In Highly Porous Nano-Bamboo Si-Au Superlattice-Type Thin Films, Ufuk Kılıç, Alyssa Mock, René Feder, Derek Sekora, Matthew J. Hilfiker, Rafal Korlacki, Eva Schubert, Christos Argyropoulos, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

We report on fabrication of spatially-coherent columnar plasmonic nanostructure superlattice-type thin films with high porosity and strong optical anisotropy using glancing angle deposition. Subsequent and repeated depositions of silicon and gold lead to nanometer-dimension subcolumns with controlled lengths. The superlattice-type columns resemble bamboo structures where smaller column sections of gold form junctions sandwiched between larger silicon column sections (“nano-bamboo”). We perform generalized spectroscopic ellipsometry measurements and finite element method computations to elucidate the strongly anisotropic optical properties of the highly-porous nano-bamboo structures. The occurrence of a strongly localized plasmonic mode with displacement pattern reminiscent of a dark quadrupole mode is …


Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert May 2018

Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert

Department of Electrical and Computer Engineering: Faculty Publications

WO3 thin films were grown by atomic layer deposition and spectroscopic ellipsometry data gathered in the photon energy range of 0.72-8.5 eV and from multiple samples was utilized to determine the frequency dependent complex-valued isotropic dielectric function for WO3. We employ a critical-point model dielectric function analysis and determine a parameterized set of oscillators and compare the observed critical-point contributions with the vertical transition energy distribution found within the band structure of WO3 calculated by density functional theory. We investigate surface roughness with atomic force microscopy and compare to ellipsometric determined effective roughness layer thickness.


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


Photoluminescence Studies Of Amorphous Boron Carbide And Tungsten Diselenide Thin Films, David M. Allendorfer Dec 2016

Photoluminescence Studies Of Amorphous Boron Carbide And Tungsten Diselenide Thin Films, David M. Allendorfer

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

For many years scientists and engineers have been researching semi-conducting materials for use in a broad array of electronic devices. With the growing demand for faster, smaller and more efficient electronics, new materials must be characterized and their properties quantified. The focus of this thesis is to develop a system to measure photoluminescence in opto-electronic materials. Photoluminescence measurements are important because it can give researchers valuable information about a material’s band structure. This thesis begins by presenting the carrier recombination mechanisms and how they apply to photoluminescence. A system was developed to measure photoluminescence spectroscopy. This system was tested with …


Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis Dec 2015

Ellipsometric Characterization Of Silicon And Carbon Junctions For Advanced Electronics, Alexander G. Boosalis

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Ellipsometry has long been a valuable technique for the optical characterization of layered systems and thin films. While simple systems like epitaxial silicon dioxide are easily characterized, complex systems of silicon and carbon junctions have proven difficult to analyze. Traditional model dielectric functions for layered silicon homojunctions, a system with a similar structure to modern transistors, often have correlated parameters during ellipsometric data analysis. Similarly, epitaxial graphene as grown from thermal sublimation of silicon from silicon carbide or through chemical vapor deposition, tend to have model dielectric function parameters that correlate with the optical thickness of the graphene due to …


Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang May 2015

Generalized Ellipsometry Analysis Of Anisotropic Nanoporous Media: Polymer-Infiltrated Nanocolumnar And Inverse-Column Polymeric Films, Dan Liang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Characterization of the structural and optical properties is a subject of significance for nanoporous material research. However, it remains a challenge to find non-destructive methods for investigating the anisotropy of porous thin films with three-dimensional nanostructures. In this thesis, a generalized ellipsometry (GE) analysis approach is employed to study two types of anisotropic nanoporous media: slanted columnar thin films (SCTFs) with polymer infiltration and inverse-SCTF polymeric films. The thesis presents the physical properties obtained from GE analysis, including porosity, columnar shape, principal optical constants, birefringence, etc.

The thesis reports on using a GE analysis approach, combining the homogeneous biaxial layer …


Influence Of Resonant And Non-Resonant Vibrational Excitation Of Ammonia Molecules In Gallium Nitride Synthesis, Hossein Rabiee Golgir, Yunshen Zhou, Kamran Keramatnejad, Yongfeng Lu Jan 2015

Influence Of Resonant And Non-Resonant Vibrational Excitation Of Ammonia Molecules In Gallium Nitride Synthesis, Hossein Rabiee Golgir, Yunshen Zhou, Kamran Keramatnejad, Yongfeng Lu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Attempts on the selective promotion of gallium nitride (GaN) growth were investigated by deploying laserassisted vibrational excitation of reactant molecules, which deposits energy selectively into specific molecules and activate the molecules towards the selected reaction pathways. Laser-assisted metal organic chemical vapor deposition (LMOCVD) of GaN was studied using a wavelength-tunable CO2 laser. The NH-wagging modes (υ2) of ammonia (NH3) precursor molecules are strongly infrared active and perfectly match the emission line of the CO2 laser at 9.219, 10.350, and 10.719 μm. On- and off-resonance excitations of molecules were performed via tuning the incident laser wavelengths at on-resonant wavelength 9.219 μm …


Introduction To Special Issue Of Journal Of Defense Modeling And Simulation: Novel Approaches To Defense And Military Modeling And Simulation, Scott D. Snyder, James M. Taylor Jr Jan 2014

Introduction To Special Issue Of Journal Of Defense Modeling And Simulation: Novel Approaches To Defense And Military Modeling And Simulation, Scott D. Snyder, James M. Taylor Jr

Peter Kiewit Institute: Faculty Publications

Developing solutions to complex problems in government and industry is a daunting task that often requires tremendous investment in time and resources to solve. Modeling and simulation (M&S) has incredible potential to streamline development and cut costs by conducting virtual experiments that give insight into performance under various test conditions. As many program managers in the federal acquisition process can attest, realistic testing of live equipment in an operational environment can be some of the most expensive parts of a development program. M&S can provide insight into mission success of yetto- bedesigned systems without the need to actually build and …


Simple Multi-Attribute Rating Technique For Renewable Energy Deployment Decisions (Smart Redd), James M. Taylor Jr, Betty Love Jan 2014

Simple Multi-Attribute Rating Technique For Renewable Energy Deployment Decisions (Smart Redd), James M. Taylor Jr, Betty Love

Peter Kiewit Institute: Faculty Publications

In the effort to provide electrical power service and the sustaining fuel required to run generators at forward-deployed bases in Afghanistan and Iraq over more than 10 years, the US military spent billions of dollars and a paid a heavy toll in terms of human casualties. The green energy linear program for optimizing deployments (GELPOD) proof-of-concept model showed that a linear program could be used to optimize combat deployment of energy generation systems to minimize cost and casualties. Results indicated that reduction in both cost and casualties for renewable energy sources was highly dependent on fuel cost and deployment length. …


Fabrication And Characterization Of Thermomechanically Processed Sulfur And Boron Doped Amorphous Carbon Films, Lonnie Carlson Aug 2012

Fabrication And Characterization Of Thermomechanically Processed Sulfur And Boron Doped Amorphous Carbon Films, Lonnie Carlson

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Small scale, high power density, reliable, and long-life power supplies would be useful or even critical for space missions or the growing number of microdetectors, microsensors, and miniature vehicles. Alpha or beta particle voltaic devices could satisfy these requirements but have been shown to degrade quickly due to radiation damage. Amorphous carbon (a-C) PN junctions or PIN devices could provide radiation hardness and sufficiently high efficiency. As the range of alpha and beta particles in a-C is ~20-120μm, much thicker films than are typical are needed to maximize collection of the particle energy.

In this work, the fabrication of thermomechanically …


Optical And Magnetic Properties Of Feni Slanted Columnar Thin Films Infiltrated With Pmma And Fe3O4 Nanoparticles, Dan Liang Dec 2011

Optical And Magnetic Properties Of Feni Slanted Columnar Thin Films Infiltrated With Pmma And Fe3O4 Nanoparticles, Dan Liang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, dielectric polymer and magnetic nanoparticles were utilized to hybridize FeNi Slanted columnar thin films (SCTFs). Firstly Fe3O4 in PMMA matrix was prepared by physical blending process. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to investigate the dispersion of the nanoparticles in PMMA matrix and the preparation conditions were varied to optimize the dispersion. The hybridized materials were prepared by the infiltration of PMMA and 5 wt% Fe3O4 nanoparticles/PMMA to the voids of FeNi SCTFs. Spin-coating and annealing process were employed to reach an excellent infiltration.

The structural …


In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert