Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Materials Science and Engineering

Design, Modeling, And Testing Of A Novel Inductor For Electric Vehicles: Iron Nitride Soft Magnetic Composites, Sydney F. Fultz-Waters, Jacob Krynock Jun 2023

Design, Modeling, And Testing Of A Novel Inductor For Electric Vehicles: Iron Nitride Soft Magnetic Composites, Sydney F. Fultz-Waters, Jacob Krynock

Materials Engineering

New technology for electric vehicles (EVs) must meet the requirements of higher energy usage, lower costs, and more sustainable source materials. One promising material for EV power system components is iron nitride (IN) soft magnetic composites (SMCs) because of their competitive magnetic properties and high abundance of the source materials. As part of an ongoing program at Sandia National Laboratories, this project focused on using computer modeling to optimize the prototyping process for an iron nitride SMC toroidal inductor to reach a target inductance of 600 μH. Four inductors with different combinations of wiring (26 AWG and 20 AWG) and …


Exploring The Potential Of Pavegen’S Kinetic Energy Generating Floor For Sustainable Energy Solutions: A Proposal For Cal Poly Slo, Brandon J. Cuneo Jun 2023

Exploring The Potential Of Pavegen’S Kinetic Energy Generating Floor For Sustainable Energy Solutions: A Proposal For Cal Poly Slo, Brandon J. Cuneo

Construction Management

This paper proposes the installation of Pavegen's kinetic energy generating floors at Cal Poly’s campus as a sustainable energy solution. Pavegen has developed a pioneering technology that converts footsteps into clean and renewable energy. The versatility of these floors is demonstrated through successful implementations in various settings, such as transportation hubs and public spaces, generating power from foot traffic. Collaborations with Schneider Electric, installation at Dupont Circle, and integration at Heathrow Airport showcase the potential for sustainable urban infrastructure. This paper outlines research conducted on Pavegen and similar solutions, including communication with company representatives and examining proposed installation locations at …


Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd Sep 2022

Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd

Physics

Positive Thermal Coefficients, PTCs, are materials that abruptly change in resistance in response to changes in temperature. The purpose of this experiment is to explore the viability of using the switching type ceramic PTC thermistor as a replacement for current resistive heaters. These types of PTCs have a nonlinear change in resistance with increases in temperature. This device will be used as a temperature-controlling heating element intended to power an Insulated Solar Electric Cooker (ISEC). The ISEC is designed to cook meals throughout the day for impacted communities as an alternative cooking method that doesn’t require biofuel as an energy …


Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier Jun 2022

Dynamic Response Of Elastic Two-Story Steel Moment Frame Scaled Structure Equipped With Viscous Dampers, Garrett L. Barker, Alexander L. Poirier

Architectural Engineering

The authors of this report are Architectural Engineering undergraduate students at California Polytechnic State University, San Luis Obispo. Damping is a complex, experimentally derived value that is affected by many structural properties and has a profound effect on the dynamic response of structures. Deducing the inherent damping of a steel moment frame and affecting the damping ratio with viscous dampers are two topics explored in this paper. Dampers are commonly implemented in resilient structures that perform better in a design basis earthquake, reducing the seismic cost and downtime. Undergraduate coursework does not delve into the factors that affect damping and …


Model-Based Design Of An Optimal Lqg Regulator For A Piezoelectric Actuated Smart Structure Using A High-Precision Laser Interferometry Measurement System, Grant P. Gallagher Jun 2022

Model-Based Design Of An Optimal Lqg Regulator For A Piezoelectric Actuated Smart Structure Using A High-Precision Laser Interferometry Measurement System, Grant P. Gallagher

Master's Theses

Smart structure control systems commonly use piezoceramic sensors or accelerometers as vibration measurement devices. These measurement devices often produce noisy and/or low-precision signals, which makes it difficult to measure small-amplitude vibrations. Laser interferometry devices pose as an alternative high-precision position measurement method, capable of nanometer-scale resolution. The aim of this research is to utilize a model-based design approach to develop and implement a real-time Linear Quadratic Gaussian (LQG) regulator for a piezoelectric actuated smart structure using a high-precision laser interferometry measurement system to suppress the excitation of vibratory modes.

The analytical model of the smart structure is derived using the …


Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate May 2019

Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate

Biomedical Engineering

The objective is to produce an electrophysiological model of an adult human left atrium. This model will be used to test mapping probe catheters used for locating cardiac arrhythmias against current technology used in practice. Dr. Chris Porterfield requested this model and other physicians or probe catheter manufacturers may also use this product in the future. Dr. Porterfield also discussed the possibility of future senior project groups using the model as a bench test for designing new catheter tips. The model will precisely simulate electrical behaviors of the heart in normal as well as arrhythmic conditions. Ideally, the model will …


Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang Jun 2017

Inkjet Printing Of Nano-Silver Conductive Ink On Pet Substrate, Skyler Jiang

Materials Engineering

Printing of conductive ink traditionally uses copper-based ink and was used on high temperature metal substrates due to the high curing and sintering temperature of copper. In this experiment, however, Metalon JS-B25P nano-silver conductive ink was printed using an Epson Stylus C88+ inkjet printer on polyethylene terephthalate (PET) based Novele printing media made for low temperature applications. With silver’s lower sintering temperature, the nano-silver particles in this ink are desired to be able to sinter at a low enough temperature to be used on the PET substrate. The printed ink traces were cured with a temperature-controlled hotplate at 100℃, 120℃, …


Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo Jun 2017

Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo

Mechanical Engineering

Lawrence Livermore National Laboratory has invested considerable effort to develop new standard for nuclear grade HEPA filters that can withstand high temperatures along with methods to optimally test not only the experimental filter media, but also new frame seals and media binders. Therefore, LLNL in collaboration with Cal Poly has designed and built a Mini High Temperature Testing Unit (MHTTU) to recreate conditions observed during a fire and to test different materials in an effective, inexpensive, regulated and reliable method. The existing prototype was unable to achieve the ideal testing conditions of 1000°F air at the low flow rates of …


Inquiry Of Graphene Electronic Fabrication, John Rausch Greene Sep 2016

Inquiry Of Graphene Electronic Fabrication, John Rausch Greene

Master's Theses

Graphene electronics represent a developing field where many material properties and devices characteristics are still unknown. Researching several possible fabrication processes creates a fabrication process using resources found at Cal Poly a local industry sponsor. The project attempts to produce a graphene network in the shape of a fractal Sierpinski carpet. The fractal geometry proves that PDMS microfluidic channels produce the fine feature dimensions desired during graphene oxide deposit. Thermal reduction then reduces the graphene oxide into a purified state of graphene. Issues arise during thermal reduction because of excessive oxygen content in the furnace. The excess oxygen results in …


Manufacturing And Characterization Of Poly (Lactic Acid)/Carbon Black Conductive Composites For Fdm Feedstock: An Exploratory Study, Dylan Fitz-Gerald, Justin Boothe Jun 2016

Manufacturing And Characterization Of Poly (Lactic Acid)/Carbon Black Conductive Composites For Fdm Feedstock: An Exploratory Study, Dylan Fitz-Gerald, Justin Boothe

Materials Engineering

This exploratory study developed methods of manufacturing and characterizing the electrical properties of small batches of conductive composite feedstock for the Fused Deposition Modeling (FDM) manufacturing process, commonly known as 3D printing. We utilized a solution casting process of Poly(lactic acid) (PLA) (Grade 4043D, NatureWorks, LLC.) and Carbon Black (CB) (Vulcan® XC72, Cabot Corp.) in chloroform. The resulting composite precursor was cryogenically treated with liquid nitrogen and milled in a coffee grinder in order to achieve particles that could be fed into the extruder. Composite precursors were dried in a vacuum oven at an elevated temperature of 38°C. Filaments were …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Forest Sign Maker, Victor Espinosa Iii, Kevin Ly, Lisa Yip Jun 2015

Forest Sign Maker, Victor Espinosa Iii, Kevin Ly, Lisa Yip

Mechanical Engineering

Executive Summary:

The Inyo National Forest is arguably one of the most beautiful locations in California, containing natural masterpieces such as Mount Whitney and the Ancient Bristlecone Pine Forest. Despite its magnificence, the Inyo National Forest can be a treacherous region. The Friends of the Inyo take pride in being able to facilitate the viewing experience for all outdoorsmen by maintaining the mountain trails, which includes providing adequate trail signage.

Unfortunately, there is a fundamental issue with the recent state of trail signage in the Inyo National Forest: the rate at which signs are being vandalized or naturally destroyed is …


Investigation Of Degradation Effects Due To Gate Stress In Gan-On-Si High Electron Mobility Transistors Through Analysis Of Low Frequency Noise, Michael Curtis Meyer Masuda Mar 2014

Investigation Of Degradation Effects Due To Gate Stress In Gan-On-Si High Electron Mobility Transistors Through Analysis Of Low Frequency Noise, Michael Curtis Meyer Masuda

Master's Theses

Gallium Nitride (GaN) high electron mobility transistors (HEMT) have superior performance characteristics compared to Silicon (Si) and Gallium Arsenide (GaAs) based transistors. GaN is a wide bandgap semiconductor which allows it to operate at higher breakdown voltages and power. Unlike traditional semiconductor devices, the GaN HEMT channel region is undoped and relies on the piezoelectric effect created at the GaN and Aluminum Gallium Nitride (AlGaN) heterojunction to create a conduction channel in the form of a quantum well known as the two dimensional electron gas (2DEG). Because the GaN HEMTs are undoped, these devices have higher electron mobility crucial for …


Lunalight - Bringing Light To The Expanding World, Gabriela M. Igel, Daniel J. Patrick, Kimberley M. Smith Jun 2013

Lunalight - Bringing Light To The Expanding World, Gabriela M. Igel, Daniel J. Patrick, Kimberley M. Smith

Materials Engineering

The LunaLight, a solar rechargeable light and cell phone charger, addresses the lack of access to electricity faced by 1.4 billion of the world’s population (International Finance Corporation). The LunaTech team has developed a product that is bright, simple, compact, versatile and competitive with existing products. Through a partnership with the non-profit organization One Million Lights, LunaTech has improved a previous team’s design to address user feedback, concerns of durability, and manufacturability.

The LunaLight design includes a 5 component plastic housing held together by 4 screws, a surface mounted PCB, a lithium-ion (Li-Ion) battery, one high-brightness LED, a solar panel, …


Characterization And Modeling Of An O-Band 1310 Nm Sampled-Grating Distributed Bragg Reflector (Sg-Dbr) Laser For Optical Coherence Tomography (Oct) Applications, Desmond Charles Talkington Jun 2013

Characterization And Modeling Of An O-Band 1310 Nm Sampled-Grating Distributed Bragg Reflector (Sg-Dbr) Laser For Optical Coherence Tomography (Oct) Applications, Desmond Charles Talkington

Master's Theses

In this project, the performance aspects of a new early generation 1310 nm Sampled-Grating Distributed Bragg Reflector (SG-DBR) semiconductor laser are investigated. SG-DBR lasers are ideal for Source Swept Optical Coherence Tomography (SS-OCT), a Fourier-Domain based approach for OCT, necessitating a tunable wavelength source. Three internal sections control the frequency output for tuning, along with two amplifiers for amplitude control. These O-band SG-DBR devices are now being produced in research quantities. SG-DBR lasers have been produced at 1550 and 1600 nm for some times. Fundamental questions regarding the performance of the 1310 nm devices must be quantified. Standard metrics including …


Dc, Rf, And Thermal Characterization Of High Electric Field Induced Degradation Mechanisms In Gan-On-Si High Electron Mobility Transistors, Matthew Anthony Bloom Mar 2013

Dc, Rf, And Thermal Characterization Of High Electric Field Induced Degradation Mechanisms In Gan-On-Si High Electron Mobility Transistors, Matthew Anthony Bloom

Master's Theses

Gallium Nitride (GaN) high electron mobility transistors (HEMTs) are becoming increasingly popular in power amplifier systems as an alternative to bulkier vacuum tube technologies. GaN offers advantages over other III-V semiconductor heterostructures such as a large bandgap energy, a low dielectric constant, and a high critical breakdown field. The aforementioned qualities make GaN a prime candidate for high-power and radiation-hardened applications using a smaller form-factor. Several different types of semiconductor substrates have been considered for their thermal properties and cost-effectiveness, and Silicon (Si) has been of increasing interest due to a balance between both factors.

In this thesis, the DC, …


Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett Aug 2012

Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The Linac Coherent Light Source (LCLS) at SLAC depends on a photocathode electron gun to provide the linear accelerator with the raw material – electrons – used for making X-ray laser pulses. The photocathode used in the LCLS Injector is a clean copper plate in high vacuum. When the cathode is struck with high energy UV light, electrons are liberated from its surface and then accelerated down the linac with radio-frequency electric fields. These fast-moving bunches of electrons are directed through an undulator magnet to radiate X-ray light.

Although scientists have been using photocathode techniques at SLAC for 25 years, …


A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher Aug 2012

A Resistance Based Structural Health Monitoring System For Composite Structure Applications, Dennis N. Boettcher

Master's Theses

This research effort explored the possibility of using interwoven conductive and nonconductive fibers in a composite laminate for structural health monitoring (SHM). Traditional SHM systems utilize fiber optics, piezoelectrics, or detect defects by nondestructive test methods by use of sonar graphs or x-rays. However, these approaches are often expensive, time consuming and complicated.

The primary objective of this research was to apply a resistance based method of structural health monitoring to a composite structure to determine structural integrity and presence of defects.

The conductive properties of fiber such as carbon, copper, or constantan - a copper-nickel alloy - can be …


Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo Jun 2012

Fabrication And Characterization Of Torsional Micro-Hinge Structures, Mike Madrid Marrujo

Master's Theses

ABSTRACT

Fabrication and Characterization of Torsional Micro-Hinge Structures

Mike Marrujo

There are many electronic devices that operate on the micrometer-scale such as Digital Micro-Mirror Devices (DMD). Micro actuators are a common type of DMD that employ a diaphragm supported by torsional hinges, which deform during actuation and are critical for the devices to have high stability and reliability. The stress developed within the hinge during actuation controls how the actuator will respond to the actuating force. Electrostatically driven micro actuators observe to have a fully recoverable non-linear viscoelastic response. The device consists of a micro-hinge which is suspended by two …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson Jun 2012

Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson

Physics

Multipolymer photovoltaics, single layer devices made up of multiple photoactive polymers, can create organic photovoltaics (OPVs) with a wider spectral response than single polymer systems without the difficult fabrication of a tandem. Our group has successfully created multipolymer solar devices with 2% power conversion efficiency. We have analyzed the optical and electrical properties of these devices, and found that it may be possible for polymers to assist each other with charge extraction, though combining polymers disrupts single polymer crystallinity.


Morphology Changes In Pcpdtbt:Pcbm And P3ht:Pcpdtbt:Pcbm And Its Effect On Polymer Solar Cell Performance, Galen David Cauble Aug 2011

Morphology Changes In Pcpdtbt:Pcbm And P3ht:Pcpdtbt:Pcbm And Its Effect On Polymer Solar Cell Performance, Galen David Cauble

Physics

Polymer solar cell morphology is sensitive to both heat and time. By thermally annealing polymer solar cells the morphology of the devices can be altered causing immediate changes in device performance. Blending PCPDTBT:PCBM with P3HT:PCPDTBT combines the absorption characteristics of each to create a more even absorption spectrum. Subjecting PCPDTBT:PCBM, and P3HT:PCPDTBT:PCBM polymer solar cells to thermal annealing as well as recording device performance through time has shown that P3HT:PCPDTBT:PCBM devices react positively to thermal annealing (increasing from 0.8% to 1.4%) while PCPDTBT:PCBM devices have varied reactions. Furthermore, the P3HT:PCPDTBT:PCBM devices have achieved efficiencies of 1.6% in AM 1.5 compared …


Final Design Review: Design Of An Integrated Solar Cell Array To Power A Solar Ear Hearing Aid Battery Recharger, Christina (Chrissa) Blattner, Scott Carey, Jared Myren, Faye Siao Jun 2011

Final Design Review: Design Of An Integrated Solar Cell Array To Power A Solar Ear Hearing Aid Battery Recharger, Christina (Chrissa) Blattner, Scott Carey, Jared Myren, Faye Siao

Materials Engineering

As the energy of fossil fuel supplies are fast depleting due to high consumptions of energy by human beings, the need for other sources of energy, such as solar energy, has become a viable option. By creating solar cell arrays the desired voltage can be generated. The overall goal of the Solar Ear project is to create an array of photovoltaic cells connected with aluminum tracings to recharge batteries that are specifically used for hearing aids. The goal embodies two main areas: the design of a processing method to connect the cells during a micro-fabrication process and the creation of …


Irrigation Leak Detection: Using Flow Rate Sensors To Detect Breaks In An Irrigation System, Adam Openshaw, Kalvin Vu Jun 2010

Irrigation Leak Detection: Using Flow Rate Sensors To Detect Breaks In An Irrigation System, Adam Openshaw, Kalvin Vu

Computer Engineering

This report details the exploration and invention of a mechanism that can detect breaks in an irrigation system. With the ultimate goal of conserving water, we have designed an inexpensive, self sustaining flow rate monitor that can be used to identify anomalies in an irrigation system and wirelessly communicate the status of the system to a base station. Our implementation can also determine the direction of the anomaly based on the nature of the anomaly itself. This means that multiple monitors can be used to pinpoint the location of a break within the system in addition to merely detecting its …


Optimization Of P3ht-Pcbm Polymer Solar Cells Through Device Simulation And Manufacturing, James Boom Jun 2010

Optimization Of P3ht-Pcbm Polymer Solar Cells Through Device Simulation And Manufacturing, James Boom

Computer Engineering

Given a good model and implementation of that model, computer simulation can be used to reduce the time and material costs of research. To this end I worked with other students to manufacture, test and simulate the single layer P3HT-PCBM solar cell. Using the data collected from this project, future work can then be done with the project's simulator to further optimize these types of solar cell devices.


Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu Jun 2010

Enhanced Light Extraction Efficiency From Gan Light Emitting Diodes Using Photonic Crystal Grating Structures, Simeon S. Trieu

Master's Theses

Gallium nitride (GaN) light emitting diodes (LED) embody a large field of research that aims to replace inefficient, conventional light sources with LEDs that have lower power, higher luminosity, and longer lifetime. This thesis presents an international collaboration effort between the State Key Laboratory for Mesoscopic Physics in Peking University (PKU) of Beijing, China and the Electrical Engineering Department of California Polytechnic State University, San Luis Obispo. Over the course of 2 years, Cal Poly’s side has simulated GaN LEDs within the pure blue wavelength spectrum (460nm), focusing specifically on the effects of reflection gratings, transmission gratings, top and bottom …


Polyenvi, Stephen Beard, Josh Engel, Paul Fake, Diego Flores, Alvaro Nunez, Miguel Wong Jun 2010

Polyenvi, Stephen Beard, Josh Engel, Paul Fake, Diego Flores, Alvaro Nunez, Miguel Wong

Electrical Engineering

Poor indoor air quality is a problem that is recognized by the Environmental Protection Agency (EPA) to cause health issues. In order to raise awareness of this problem, this document outlines the construction of a device that economically measures air quality through five metrics: dust, smoke, ozone, humidity, and temperature. The device integrates with a router to provide users access to information about their indoor air quality anywhere over the internet as well as local access to the data via an LCD mounted on the router. By increasing indoor air quality awareness, this device will aid users in making adjustments …


Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier Jul 2009

Design And Development Of Rapid Battery Exchange Systems For Electric Vehicles To Be Used As Efficient Student Transportation, Jonathan A. Bevier

Master's Theses

Rapid battery exchange systems were built for an electric van and pedal assist electric bike as a method of eliminating the need to recharge the vehicles batteries in order to increase the feasibility of using electric propulsion as a method of efficient student transportation. After selecting proper materials it was found that the systems would need a protective coating to ensure consistent operation. 1020 cold rolled steel samples coated with multiple thicknesses of vinyl resin paint, epoxy resin paint, and powder coating were subjected to environmental wear tests in order to determine if the type and thickness of common protective …


Shielding Effectiveness Of Superalloy, Aluminum, And Mumetal Shielding Tapes, Cindy Suit Cheung Apr 2009

Shielding Effectiveness Of Superalloy, Aluminum, And Mumetal Shielding Tapes, Cindy Suit Cheung

Master's Theses

Using MIL-HDBK-419A, MATLAB and Nomographs, Shielding Effectiveness for the Magnetic Field, Electric Field, and Plane Wave were calculated over a frequency range from 10 Hz to 1 GHz. The three shielding tapes used included superalloy, aluminum, and mumetal. Calculations for Shielding Effectiveness involve the computation of Absorption Loss, Reflection Loss, and Re-Reflection Correction Factor. From the outcome of the calculations, it was suitable to conclude that all three metals fulfill the 40 dB Shielding Effectiveness requirements for SGEMP fields for frequencies greater or equal to 1 MHz. Accordingly, all three shielding tapes provide at least 40 dB of shielding to …


Optimization Of Gan Laser Diodes Using 1d And 2d Optical Simulations, Sean Richard Keali'i Jobe Mar 2009

Optimization Of Gan Laser Diodes Using 1d And 2d Optical Simulations, Sean Richard Keali'i Jobe

Master's Theses

This paper studies the optical properties of a GaN Laser Diode (LD). Through simulation, the GaN LD is optimized for the best optical confinement factor. It is found that there are optimal thicknesses of each layer in the diode that yield the highest optical confinement factor. There is a strong relationship between the optical confinement factor and lasing threshold—a higher optical confinement factor results in a lower lasing threshold. Increasing optical confinement improves lasing efficiency. Blue LDs are important to the future of lighting sources as they represent the final color in the RGB spectrum that does not have a …