Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Materials Science and Engineering

Intergranular Phases In Cyclically Annealed Yba2cu3o7-X And Their Implications For Critical Current Densities, Andrew Peter Clarke Dec 2008

Intergranular Phases In Cyclically Annealed Yba2cu3o7-X And Their Implications For Critical Current Densities, Andrew Peter Clarke

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

We report changes in the intergranular material and grain morphology of YBa2Cu3O7-x during cyclic anneals between 780 and 980 ºC in oxygen at atmospheric pressure. Two endothermic reactions were detected: (a) the eutectic reaction of YBa2Cu3O7-x with CuO and BaCuO2 at 900 ºC (enthalpy ∆Ha) and (b) the peritectic reaction of YBa2Cu3O7-x with CuO at 950 ºC (∆Hb). During the first anneal, only reaction (b) is detected, and although it should only occur if there is an excess of CuO, …


Regulating Self-Organizing Nanostructures Via External Mechanism, Jiangyu Li, Q. G. Du, Stephen Ducharme Nov 2008

Regulating Self-Organizing Nanostructures Via External Mechanism, Jiangyu Li, Q. G. Du, Stephen Ducharme

Stephen Ducharme Publications

Self-organizing nanostructures are ubiquitous in both natural and synthetic materials. They are not only appealing scientifically, by revealing the intrinsic atomic and molecular interactions that might be difficult to detect otherwise, but may also hold the key for the development of novel functional structures and devices. For their technological potential to be fully realized, the size, morphology, and distribution of the self-organizing nanostructures must be regulated. In this paper, we investigate the principles under which the self-organizing nanostructures can be regulated via external mechanisms. Using nanomesa and nanowell formation in polyvinylidene fluoride trifluoroethylene copolymer film as an example, we demonstrate …


Reflection High-Energy Electron Diffraction Studies Of Indium Phosphide (100) And Growth On Indium And Indium Nitride On Silicon (100), Mohamed Abd-Elsattar Hafez Jul 2008

Reflection High-Energy Electron Diffraction Studies Of Indium Phosphide (100) And Growth On Indium And Indium Nitride On Silicon (100), Mohamed Abd-Elsattar Hafez

Electrical & Computer Engineering Theses & Dissertations

Study of the effects of atomic hydrogen exposure on structure and morphology of semiconductor surfaces is important for fundamental properties and applications. In this dissertation, the electron yield of a hydrogen-cleaned indium phosphide (InP) surface was measured and correlated to the development of the surface morphology, which was monitored by in situ reflection high-energy electron diffraction (RHEED). Atomic hydrogen treatment produced a clean, well-ordered, and (2x4)-reconstructed InP(100) surface. The quantum efficiency, after activation to negative electron affinity, and the secondary electron emission were shown to increase with hydrogen cleaning time. RHEED patterns of low-index InP(100) surface were modified by the …


Dielectric Relaxation Behaviour Of Glycine In Acqueous Solution Medium In The Microwave Frequency Region, Ajaya Kumar Kavala Apr 2008

Dielectric Relaxation Behaviour Of Glycine In Acqueous Solution Medium In The Microwave Frequency Region, Ajaya Kumar Kavala

Mr Ajaya Kumar Kavala

No abstract provided.


Low-Energy Antiphase Boundaries, Degenerate Superstructures, And Phase Stability In Frustrated Fcc Ising Model And Ag-Au Alloys, Nikolai A. Zarkevich, Teck L. Tan, Lin-Lin Wang, Duane D. Johnson Apr 2008

Low-Energy Antiphase Boundaries, Degenerate Superstructures, And Phase Stability In Frustrated Fcc Ising Model And Ag-Au Alloys, Nikolai A. Zarkevich, Teck L. Tan, Lin-Lin Wang, Duane D. Johnson

Duane D. Johnson

An Ising model exhibits zero-energy antiphase boundaries (APBs) and frustration on close-packed face-centered cubic (fcc) and triangular lattices. The frustration results in degenerate structures and chains of long-period superstructures forming a quasicontinuous ground-state “hull” in the formation energy versus composition (c) diagram. In alloys, a nonzero but small APB energy yields a c-dependent reduction in this degeneracy that affects the phase diagram topology and range of the two-phase coexistence. Using density functional theory combined with cluster expansions (CEs), we study Ag-Au alloys as a prototype and find the effective cluster interactions (dominated by nearest-neighbor pairs), predict energetics of millions of …


Grain Growth And Texture Development In Lithium Fluoride Thin Films, Hakkwan Kim, Alexander H. King Feb 2008

Grain Growth And Texture Development In Lithium Fluoride Thin Films, Hakkwan Kim, Alexander H. King

Alexander H. King

We have studied grain-growth and texture development in polycrystalline lithium fluoride thin films using dark-field transmission electron microscopy. We demonstrate that we can isolate the size distribution of 〈111〉 surface normal grains from the overall size distribution, based on simple and plausible assumptions about the texture. The {111} texture formation and surface morphology were also observed by x-ray diffraction and atomic force microscopy, respectively. The grain-size distributions become clearly bimodal as the annealing time increases, and we deduce that the short-time size distributions are also a sum of two overlapping peaks. The smaller grain-size peak in the distribution corresponds to …


Predicting Enthalpies Of Molecular Substances: Application To Libh4, Nikolai A. Zarkevich, Duane D. Johnson Feb 2008

Predicting Enthalpies Of Molecular Substances: Application To Libh4, Nikolai A. Zarkevich, Duane D. Johnson

Duane D. Johnson

For molecular substances exhibiting harmonic and nonharmonic vibrations, we present a first-principles approach to predict enthalpy differences between phases at finite temperatures, including solid-solid and melting. We apply it to the complex hydride LiBH4. Using ab initio molecular dynamics, we predict a structure for the high-T solid phase of lithium borohydride, and we propose an approximation to account for nonharmonic vibrations. We then predict the enthalpy changes for solid-solid transition, melting, and an H-storage reaction, all in agreement with experiment.


Oligo(Vinylidene Fluoride) Langmuir-Blodgett Films Studied By Spectroscopic, Rafal Korlacki, J. Travis Johnston, Jihee Kim, Stephen Ducharme, Daniel W. Thompson, Vladimir M. Fridkin, Zhongxin Ge, James M. Takacs Jan 2008

Oligo(Vinylidene Fluoride) Langmuir-Blodgett Films Studied By Spectroscopic, Rafal Korlacki, J. Travis Johnston, Jihee Kim, Stephen Ducharme, Daniel W. Thompson, Vladimir M. Fridkin, Zhongxin Ge, James M. Takacs

Stephen Ducharme Publications

Thin films of amphiphilic vinylidene fluoride oligomers prepared by Langmuir–Blodgett deposition on silicone substrates were investigated by comparing experimental and theoretical mid-infrared (IR) spectra. The experimental spectra were obtained using infrared spectroscopic ellipsometry. Theoretical spectra were calculated using density functional theory. Excellent correspondence of major IR bands in both data sets shows that the molecular backbone is oriented with the long axis normal to the substrate plane. This is in contrast to poly vinylidene fluoride[1] LB films, in which the polymer chains are parallel to the substrate.


Synthesis And Field Emission Properties Of Carbon Nanostructures, Kun Hou Jan 2008

Synthesis And Field Emission Properties Of Carbon Nanostructures, Kun Hou

Dissertations, Theses, and Masters Projects

This dissertation focuses on developing carbon nanostructures for application as the electron emissive material in novel back-gated triode field emission devices. The synthesis, characterization, and field emission properties of carbon nanostructures, including 1-D carbon nanofibers (CNF), 2-D carbon nanosheets (CNS), and chromium oxide coated carbon nanosheets (CrOx-CNS), are presented in this work.;First, we have fabricated aligned carbon nanofiber based back-gated triode field emission devices and confirmed the operation of these devices. 1-D carbon nanofibers were directly synthesized on blank TiW substrates using direct current plasma enhanced chemical vapor deposition. It was found that the morphology of carbon nanofibers could be …