Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Materials Science and Engineering

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …


Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi Jan 2018

Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi

Doctoral Dissertations

”Research presented in this dissertation is focused on developing and validating a computational framework for study of crack propagation in polycrystalline composite ceramics capable of designing micro-architectures of phases to improve fracture toughness and damage tolerance of ZrB2-based ultra-high temperature ceramics (UHTCs). A quantitative phase-field model based on the regularized formulation of Griffith’s theory is presented for crack propagation in homogenous and heterogeneous brittle materials. This model utilizes correction parameters in the total free energy functional and mechanical equilibrium equation within the crack diffusive area to ensure that the maximum stress in front of the crack tip is …


Multi-Scale Investigation Of Microstructure, Fiber-Matrix Bond, And Mechanical Properties Of Ultra-High Performance Concrete, Zemei Wu Jan 2018

Multi-Scale Investigation Of Microstructure, Fiber-Matrix Bond, And Mechanical Properties Of Ultra-High Performance Concrete, Zemei Wu

Doctoral Dissertations

"The main objective of this study is to provide new insights into enhancing fiber-matrix bond and mechanical properties of ultra-high performance concrete (UHPC). Three main strategies were investigated: 1) use of supplementary cementitious materials; 2) use of nano-particles; and 3) use of deformed fibers. A multi-scale investigation involving the evaluation of non-fibrous UHPC mortar phase (matrix), fiber-matrix interface phase, and then UHPC composite material was undertaken to determine microstructural characteristics, fiber bond to matrix, and key mechanical properties of the UHPC matrix and UHPC. Test results indicate that the incorporation of 10%-20% silica fume effectively improved the fiber-matrix bond and …