Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Conference

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 25 of 25

Full-Text Articles in Materials Science and Engineering

Lunar In-Situ Aluminum Production Through Molten Salt Electrolysis (Lisap-Mse), Jacob Ortega, Jeffrey D. Smith, Fateme Rezaei, David Bayless, William P. Schonberg, Daniel S. Stutts, Daoru Frank Han Apr 2023

Lunar In-Situ Aluminum Production Through Molten Salt Electrolysis (Lisap-Mse), Jacob Ortega, Jeffrey D. Smith, Fateme Rezaei, David Bayless, William P. Schonberg, Daniel S. Stutts, Daoru Frank Han

NASA-Missouri Space Grant Consortium

The goal of Artemis is to establish a sustained presence on the Moon. To achieve so, numerous resources are necessary. The Moon contains several essential elements needed to sustain human presence. Most of those elements are trapped in the form of minerals. To refine those minerals into useful materials, reduction methods are needed. Most reduction methods on Earth require large amounts of mass and power which is unrealistic for early stages of building a lunar base. To solve this problem, we are developing a concept of Lunar In-Situ Aluminum Production through Molten Salt Electrolysis (LISAP-MSE).

The LISAP-MSE project, if successful, …


Novel Thermal Coating For High-Speed Airplanes, Abinash Satapathy, Lakshay Battu, Liam Watson, Nazanin Rajabi Apr 2022

Novel Thermal Coating For High-Speed Airplanes, Abinash Satapathy, Lakshay Battu, Liam Watson, Nazanin Rajabi

Symposium of Student Scholars

In comparison to various other materials, Carbon Fiber, specifically Carbon Fiber Reinforced Polymers (CFRP), is pre-eminent amongst other materials for use on aeronautical systems. Due to its high specific strength (strength-to-weight ratio), CFRP is prominent for carrying heavy loads while maintaining a lightweight build. However, when influenced by heat resulting from air resistance, CFRP is known to undergo serious degradation that would significantly decrease the effectiveness of the polymers. To prevent this degradation and maintain the strength of the CFRP, thermal protective layers (TPLs) are designed to shield the CFRP from heat exposure. This research is focused on the examination …


Husky Hand: A Low-Cost Electro-Mechanical Prosthetic Arm For The Underprivileged, Adam Robert Apr 2021

Husky Hand: A Low-Cost Electro-Mechanical Prosthetic Arm For The Underprivileged, Adam Robert

Thinking Matters Symposium

A continuation of a low-cost prosthetic upper limb prototype design which was investigated in EGN 301. The prosthetic is specifically designed for the needs and requirements of under privileged individuals in the Dominican Republic with upper limb amputations. The project focuses on the creation of an open-source computer aided prosthetic hand/arm model. The design allows consumer-grade fused filament fabrication (FFF) 3-D printers to be used. The improved design allows for the integration of the PQ-12 linear actuator for grasp and finger control. This simplifies the assembly, while, also reducing the size and mass of the whole unit. Producing a low-cost …


The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok Apr 2019

The Effect Of Flinak Molten Salt Corrosion On The Hardness Of Hastelloy N, David Kok

Scholar Week 2016 - present

The Molten Salt Reactor (MSR) has been identified as a promising candidate to replace aging nuclear reactors around the world. However, a suitable combination of molten salt and container material needs to be found in order to reduce the potential for corrosion in the MSR before it can be considered commercially viable. FLiNaK molten salt and the nickel-based alloy Hastelloy N have been identified as prime candidates for this function, but the severity of FLiNaK corrosion in Hastelloy N requires additional study before this combination can be used in the operation of a MSR. In this study, Hastelloy N samples …


Controlled Nanomorphology Of Hybrid Organic/Inorganic Multi-Component Composites Through Cooperative Non-Covalent Interactions, Lingyao Meng Nov 2018

Controlled Nanomorphology Of Hybrid Organic/Inorganic Multi-Component Composites Through Cooperative Non-Covalent Interactions, Lingyao Meng

Shared Knowledge Conference

Hybrid organic–inorganic nanocomposite polymers, with inorganic nanoparticles embedded in organic matrix have emerged as a special category of multifunctional materials. With rational materials design, these hybrids can show the synergistic effect of the properties from both phases. Homogenous dispersion and orderly arrangement of the organic and inorganic components are key in their functionalities. By controlling the interface and corresponding interfacial interactions between the organic and inorganic entities, we have developed a logical approach to form stable and controlled hybrid nanofiber structures. We demonstrate the formation of hybrid polymer/quantum dots (or iron oxide nanoparticles) nanocomposites through non-covalent interactions (hydrogen bonding, ionic …


Computational Catalysis: Creating A User-Friendly Tool For Research And Education, Kevin P. Greenman, Peilin Liao Aug 2018

Computational Catalysis: Creating A User-Friendly Tool For Research And Education, Kevin P. Greenman, Peilin Liao

The Summer Undergraduate Research Fellowship (SURF) Symposium

Catalysis is used in a significant portion of production processes in the industrialized world, including most processing of chemicals and fuels. This makes maximizing the efficiency of catalysts a high priority. However, the immense number of candidates for new catalysts precludes the possibility of testing all of them by experiments. Density functional theory (DFT) has been widely and successfully used to calculate material properties relevant to catalysis and to screen promising candidates for experimental testing, but there currently exists no publicly- available, user-friendly tool for performing these DFT calculations. This work details the development of such a tool for nanoHUB.org …


Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev Aug 2018

Thermophotovoltaic Devices: Combustion Chamber Optimization And Modelling To Maximize Fuel Efficiency, Arnold Chris Toppo, Ernesto Marinero, Zhaxylyk Kudyshev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, 110 billion cubic meters of natural gas (primarily methane), a potent greenhouse gas, are flared off for environmental and safety reasons. This process results in enough fuel to provide the combined natural gas consumption of Germany and France. The research team developed a thermophotovoltaic device to convert thermal energy to electricity at a high efficiency using proprietary emitters and combustion system. With the current focus being fuel efficiency and the combustion process, the assembly was simulated using ANSYS Fluent modelling software and the following parameters were optimized: air/fuel ratios, flow rates, and inlet sizes. Simultaneously the heat transfer across …


Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker Aug 2018

Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Mussels and other marine creatures adhere very well in underwater environments, having the ability to withstand the force of the sea. These animals have inspired synthetic biomimetic adhesives for wet systems, presenting potential for biomedical applications. However, most current commercial adhesives tend to be brittle, not resisting repetitive movements. This study assesses toughening strategies to improve the mussel-inspired adhesives’ ductility while maintaining its strength. The strategies included altering the polymer’s chemical structure by changing the percentage of polyethylene glycol (PEG) in the molecule and by adding fillers, such as calcium carbonate, silica and nacre - a calcium carbonate compound found …


Variable Temperature Thermochromic Switching Under Varying Illumination, Alexis Corbett, Danielle Hall, John E. Sinko Apr 2018

Variable Temperature Thermochromic Switching Under Varying Illumination, Alexis Corbett, Danielle Hall, John E. Sinko

Huskies Showcase

Award for "Runner-Up Poster Presentation".

Abstract

Minnesota is home to some of the greatest temperature ranges in the United States, with lows reaching below -40º Celsius and highs reaching nearly 40ºC. This results in higher than average spending on the heating and cooling of buildings. We have been investigating into responsive building materials to help address this. In particular, we have been studying a thermochromic paint that can capture solar energy and transfer it into the building as heat at low temperatures and reflect the energy at higher temperatures to keep the building cooler.


Computational Materials Characterization, Discovery, And Design With High Performance Computing, Qunfei Zhou, Xiaotao Liu, Tyler Maxwell, Thomas John Balk, Matthew J. Beck Oct 2017

Computational Materials Characterization, Discovery, And Design With High Performance Computing, Qunfei Zhou, Xiaotao Liu, Tyler Maxwell, Thomas John Balk, Matthew J. Beck

Commonwealth Computational Summit

No abstract provided.


Numerical Simulation On The Combustion Characteristic Of Iron Ore Sintering With Flue Gas Recirculation, Gan Wang, Zhi Wen, Guofeng Lou, Ruifeng Dou, Xunliang Liu, Fuyong Su, Sizong Zhang Oct 2016

Numerical Simulation On The Combustion Characteristic Of Iron Ore Sintering With Flue Gas Recirculation, Gan Wang, Zhi Wen, Guofeng Lou, Ruifeng Dou, Xunliang Liu, Fuyong Su, Sizong Zhang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Molecular Dynamics Studies Of The Adsorption Behavior Of Methyl 3-((2-Mercaptophenyl)Imino)Butanoate As Corrosion Inhibitors On Copper Surface, Jianlin Sun, Sang Xiong, Xudong Yan, Yang Xu Oct 2016

Molecular Dynamics Studies Of The Adsorption Behavior Of Methyl 3-((2-Mercaptophenyl)Imino)Butanoate As Corrosion Inhibitors On Copper Surface, Jianlin Sun, Sang Xiong, Xudong Yan, Yang Xu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Amine-Thiol Solution Route Method For Fabricating Cdxzn1-Xs Thin Film Solar Cells, Preston D. Fernandez, Xianyi Hu, Carol Handwerker, Rakesh Agrawal Aug 2016

Amine-Thiol Solution Route Method For Fabricating Cdxzn1-Xs Thin Film Solar Cells, Preston D. Fernandez, Xianyi Hu, Carol Handwerker, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cadmium zinc sulfide, CdZnS, is a promising material for the buffer layer of thin film solar cells because the alloy is considerably more cost effective and more optimizable than pure cadmium sulfide, CdS, in terms of band gap. The current fabrication methods of the buffer layer often require expensive equipment or produce undesirable impurities in the alloy. This study investigates a cost effective and scalable solution route method to synthesize the CdZnS buffer layer. Molecular precursors of CdZnS were dissolved in varying molecular ratios of cadmium and zinc in a mixture of hexylamine and propanethiol. The resulting alloys produced were …


Adsorption Mechanisms Of Palladium On The Tobacco Mosaic Virus Surface, Gloriia D. Novikova, Oluwamayowa Adigun, Erin Retzlaff-Roberts, Michael T. Harris Aug 2015

Adsorption Mechanisms Of Palladium On The Tobacco Mosaic Virus Surface, Gloriia D. Novikova, Oluwamayowa Adigun, Erin Retzlaff-Roberts, Michael T. Harris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Organic-inorganic materials synthesis using biological templates has recently drawn immense attention of researchers. Biotemplating has shown to be an efficient and economic means of nanomaterials production. Naturally stable, readily available and genetically malleable, Tobacco Mosaic Virus (TMV) is one of the most extensively studied and characterized biotemplates. Particularly, templated synthesis using TMV has produced high quality nanorods and nanowires that have been applied to batteries, memory devices and catalysis. The fundamental mechanisms, governing the adsorption of palladium on the TMV Wild Type and genetically modified versions (TMV1Cys and TMV2Cys), are not fully understood; this knowledge, however, is essential for future …


Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay Aug 2015

Synthesis, Characterization, And Thermoelectric Properties Of Radical Siloxanes, Arnold J. Eng, Bryan Boudouris, Edward P. Tomlinson, Martha Emily Hay

The Summer Undergraduate Research Fellowship (SURF) Symposium

More than half of the annual energy consumption in the United States is lost as waste heat. Polymer-based thermoelectric devices have the potential to utilize this waste heat both sustainably and cost-effectively. Although conjugated polymers currently dominate research in organic thermoelectrics, the potential of using polymers with radical pendant groups have yet to be realized. These polymers have been found to be as conductive as pristine (i.e., not doped) poly(3-hexylthiophene) (P3HT), a commonly-used charge-transporting conjugated polymer. This could yield promising avenues for thermoelectric material design as radical polymers are more synthetically tunable and are hypothesized to have a high Seebeck …


Synthesis And Thermoelectric Properties Of Cusbs2, Tianyue Gao, Haiyu Fang, Yue Wu Aug 2014

Synthesis And Thermoelectric Properties Of Cusbs2, Tianyue Gao, Haiyu Fang, Yue Wu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Copper antimony sulfide, CuSbS2 nanoparticles have a large potential of being a good thermoelectric material because they are made up of earth abundant elements. Thermoelectric materials can convert thermal energy into electricity, so that the wasted energy can be saved. Also, by using this earth abundant material, we can make thermoelectric materials much cheaper. The hypothesis of this study is that CuSbS2 could have a large Seebeck coefficient, one of the most important factors of thermoelectric materials, because of the complexity of its band structure. The other hypothesis is that thermal transport could be significantly suppressed through nanostructuring. There are …


Polymer-Based Thermoelectric Devices, Stuart W. Hilsmier, Edward P. Tomlinson, Bryan Boudouris Aug 2014

Polymer-Based Thermoelectric Devices, Stuart W. Hilsmier, Edward P. Tomlinson, Bryan Boudouris

The Summer Undergraduate Research Fellowship (SURF) Symposium

Currently, over 50% of all energy generated in the US is lost as waste heat, and thermoelectric generators offer a promising means to recoup some of this energy, if their efficiency is improved. While organic thermoelectric materials lack the efficiency of their inorganic counterparts, they are composed of highly abundant resources and have low temperature processing conditions. Recently, a new class of redox-active polymers, radical polymers, has exhibited high electrical conductivity in an entirely amorphous medium. In addition, these radical polymers have a simple synthetic scheme and can be highly tunable to provide desired electrical properties. In this study, the …


Characterization Of Swelling Ratio And Water Content Of Hydrogels For Cartilage Engineering Applications, Emily E. Gill, Renay S.-C. Su, Julie C. Liu Aug 2014

Characterization Of Swelling Ratio And Water Content Of Hydrogels For Cartilage Engineering Applications, Emily E. Gill, Renay S.-C. Su, Julie C. Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Due to the high prevalence of arthritis and cartilage-related injuries, tissue engineers are studying ways to grow cartilage tissue replacements. Resilin, an elastomeric protein found in insect cuticles, is known for its extraordinary resilience and elasticity. In previous studies, recombinant resilin-based hydrogels, or cross-linked protein networks, exhibited potential for use in cartilage tissue scaffolds. Our lab successfully developed resilin-based proteins with a sequence based on the mosquito gene and showed that resilin-based hydrogels possess mechanical properties of the same order of magnitude as native articular cartilage. In addition, these mechanical properties can be controlled by changing the protein concentration. To …


Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia Jun 2013

Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

The Problem/Opportunity: To define, identify, and guide design-based materials collections in academic settings and foster community among those with existing collections and/or those considering creating and supporting one.

Contents and topics:

  1. What is a materials collection?
  2. Why have a materials collection?
  3. Acquisition strategies
  4. Organizational approaches
  5. Programming possibilities
  6. Symposium summary
  7. Resources


Applied Analysis Of Ionic Polymer Metal-Composite Actuators, Siul Ruiz, Benjamin Mead, Woosoon Yim Apr 2013

Applied Analysis Of Ionic Polymer Metal-Composite Actuators, Siul Ruiz, Benjamin Mead, Woosoon Yim

College of Engineering: Graduate Celebration Programs

  • IPMC is a type of smart material called an electroactive polymer
  • Consists of an ionic polymer such as Nafion or Flemion and a conducive metal such as platinum or gold
  • COMSOL multi-physics simulations accurately model the experimental displacement results
  • Optimization performed using the multi-physics model to find the maximum deflection, force, and twisting
  • Using the closed loop control system accurate IPMC tip location can be achieved
  • This control system has been extended to function using a computer mouse as an input


2nd Annual Undergraduate Research Conference Abstract Book, University Of Missouri--Rolla Apr 2006

2nd Annual Undergraduate Research Conference Abstract Book, University Of Missouri--Rolla

Undergraduate Research Conference at Missouri S&T

No abstract provided.