Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Materials Science and Engineering

Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell Aug 2018

Tool For Correlating Ebsd And Afm Data Arrays, Andrew Krawec, Matthew Michie, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ceramic and semiconductor research is limited in its ability to create holistic representations of data in concise, easily-accessible file formats or visual data representations. These materials are used in everyday electronics, and optimizing their electrical and physical properties is important for developing more advanced computational technologies. There is a desire to understand how changing the composition of the ceramic alters the shape and structure of the grown crystals. However, few accessible tools exist to generate a dataset with the proper organization to understand correlations between grain orientation and crystallographic orientation. This paper outlines an approach to analyzing the crystal structure …


Grain Boundary Migration Of Nio-Mgo Alloys, Xin Li Phuah, David Lowing, John Blendell Aug 2015

Grain Boundary Migration Of Nio-Mgo Alloys, Xin Li Phuah, David Lowing, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Grain boundary engineering offers enhanced control of microstructure development during processing, leading to improved final material properties. However, using the effects of the interfacial energy anisotropy on grain boundary mobility to control microstructure development is not well understood. The NiO-MgO system is studied as it has complete solid solubility and a transition in the faceting behavior with composition due to changes in the interfacial energy anisotropy. NiO-MgO powders were produced through the amorphous citrate process and modifications to the process were made to reduce particle and agglomerate size. The powders were pressed and sintered in various conditions to produce fine …


Investigation Of The Performance Of Different Types Of Zirconium Microstructures Under Extreme Irradiation Conditions, Eric M. Acosta, Osman J. El-Atwani Aug 2014

Investigation Of The Performance Of Different Types Of Zirconium Microstructures Under Extreme Irradiation Conditions, Eric M. Acosta, Osman J. El-Atwani

The Summer Undergraduate Research Fellowship (SURF) Symposium

The safe and continued operation of the US nuclear power plants requires improvement of the radiation resistant properties of materials used in nuclear reactors. Zirconium is a material of particular interest due to its use in fuel cladding. Studies performed on other materials have shown that grain boundaries can play a significant role on the radiation resistant properties of a material. Thus, the focus of our research is to investigate the performance of different zirconium microstructures under irradiation conditions similar to those in commercial nuclear reactors. Analysis of the surface morphology of zirconium both pre- and post-irradiation was conducted with …


Microstructure Development Of Granular System During Compaction, Chen Shang, Marcial Gonzalez Aug 2014

Microstructure Development Of Granular System During Compaction, Chen Shang, Marcial Gonzalez

The Summer Undergraduate Research Fellowship (SURF) Symposium

Granular materials is the second most manipulated material in the industry today. They are easy to transport and more and more newly developed materials cannot stand the process of traditional casting, like energetic materials and bio-materials, but will survive the powder compaction process. Having a better understanding of the microstructure development of granular systems during compaction process, especially for particles that will heavily deform under loading, will give an insight of how to better process the powders to produce materials with overall better performance comparing to bulk materials. The main theory and mechanism applied are Hertz law and nonlocal contact …


Characterization Of Lead-Free Piezo-Ceramics, Hanhan Zhou, John Blendell Oct 2013

Characterization Of Lead-Free Piezo-Ceramics, Hanhan Zhou, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lead zirconate titanate (PZT) has been the most commonly used piezoelectric material due to its high piezoelectric performance under varied operating conditions. However, it has been noticed that the lead component is toxic, causing some environmental issues and a lead free substitute material was introduced. The substituted environmental friendly piezoelectric material, Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) system that can fulfill the need of high piezoelectricity has been developed. The research was conducted to characterize the BZT-xBCT system with five different compositions (x=0.06, 0.08, 0.1, 0.12 and 0.14).. XRD was applied to examine the crystal structure of the samples before and after poling and …


Computation Of Piezo-Electric Materials, Seung Yun Song, R. Edwin García Oct 2013

Computation Of Piezo-Electric Materials, Seung Yun Song, R. Edwin García

The Summer Undergraduate Research Fellowship (SURF) Symposium

Piezo -electric materials are materials that will change its shape and size when an electric field is applied to the material. Vice versa, these materials will generate a certain voltage when they are bent, vibrated, or deformed. These materials show promising future , because they link mechanical and electrical properties of a material. In 21st century when electronic devices such as smart phones or touch-screen TV’s depend highly on mechanical input such as human’s touch, developing and researching materials that can link the mechanical and electrical properties can greatly improve the quality of i-phones. The main challenge regarding piezo-electric …