Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Materials Science and Engineering

Layered Structure Protonic Ceramic Conductors Of The Form Ba5in2+Xal2zr1-Xo13-Δ, Nathan Cretegny May 2024

Layered Structure Protonic Ceramic Conductors Of The Form Ba5in2+Xal2zr1-Xo13-Δ, Nathan Cretegny

All Theses

In this work, the hexagonal perovskite of targeted composition Ba5In2+xAl2Zr1-xO13 (x=0, 0.1, 0.2) was synthesized via a solid-state synthesis route to study the impact of oxygen vacancy concentration in layered hexagonal perovskites. Precursor oxides were mixed in stoichiometric proportions, calcined between 800-1200℃ and sintered at 1475℃. The sintered pellets were crushed into fine powders to investigate the chemistry and structure through X-ray diffraction, neutron diffraction, inductively coupled plasma mass spectrometry, and nuclear magnetic resonance. Dense pellets were used to study conductivity properties using electrochemical impedance spectroscopy.

The synthesis approach produced 100% …


Preparation Of High Entropy Titanite Pyrochlore And Radiation Stability Study, Adam Gootgeld Aug 2023

Preparation Of High Entropy Titanite Pyrochlore And Radiation Stability Study, Adam Gootgeld

All Theses

Pyrochlore has been studied as a host phase for safe storage of radionuclides and exists naturally with long-term stability with good long-range order [1]. High entropy oxides show promising tunable properties that could demonstrate favorable bulk deposit of radioactive materials such as spent nuclear fuel (Uranium and other actinides). It is proposed that using high entropy oxides (HEOs) as the cation in this framework will shift the gibbs free energy so that radioactive nuclear waste will be stabilized for safe, long-term, eco-friendly storage. We have established a consistent method to fabricate high entropy titanite pyrochlores. In this study, ion beam …


Modeling Hierarchical Porous Electrodes With Tailored Anisotropic Structure, Debanjan Sarker Aug 2022

Modeling Hierarchical Porous Electrodes With Tailored Anisotropic Structure, Debanjan Sarker

All Theses

Modern electric vehicles and consumer electronics applications demand high specific energy from Li-ion batteries, which can be charged and discharged faster. In the search for high specific energy, researchers have tried to make thicker battery electrodes which contain a greater proportion of active material. While chemical and structural modification of electrodes can help to increase the electronic conductivity of active material, the microstructure of porous electrodes can be engineered to enhance ion transport for fast charge and discharge. Previous research has shown that macropores introduced by directional freeze tape casting can enhance the performance of thick porous electrodes. For instance, …


Near-Earth Ion Irradiation Effects On Functional Ceramic Materials: A Combined Experimental-Monte Carlo Approach, William J. Sands May 2022

Near-Earth Ion Irradiation Effects On Functional Ceramic Materials: A Combined Experimental-Monte Carlo Approach, William J. Sands

All Theses

The near-Earth space radiation environment is a complex system that creates a harmful environment for materials to operate in. Motivated by the search for using optical defects as an indicator of radiation damage, five single-crystal functional ceramic materials were selected to undergo ion irradiation at conditions found in the near-Earth space environment. Due to the complex nature of ion irradiation effects in ceramic materials, a host of calculations and experimental characterization methods were used. Calculations using the 2013 SRIM code were used to evaluate the ion projected range and the type and number of defects (vacancies) created by ion irradiation. …