Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Materials Science and Engineering

L(D)-Tyrosine-Mediated One-Step Chiral Graphene Production For Chirality-Dependent Sensing, Fnu Pranav, Ali Ashraf, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu Sep 2023

L(D)-Tyrosine-Mediated One-Step Chiral Graphene Production For Chirality-Dependent Sensing, Fnu Pranav, Ali Ashraf, Meena Jaggi, Subhash C. Chauhan, Murali M. Yallapu

Research Symposium

Background: Chirality has been the most iconic phenomenon that occurred in nature. The idea of mirror-image asymmetry associated with the biological entity is still unsolved The emergence of 2D layered nanomaterials which have already shown amazing properties and a wide range of applications, especially in the areas of sensing.Amino acids enantiomers have similar physical and chemical properties however their physiological responses get changed based on the enantiomers. For example, L from amino acids helps body in protein formation, and generation of biological signals etc. whereas the D-form may cause toxic effects. We have developed a novel and facile synthesis method …


Gopher Tortoise Seed Dispersal Monitoring, Bryan Torres Garcia Nov 2022

Gopher Tortoise Seed Dispersal Monitoring, Bryan Torres Garcia

2022 MME Undergraduate Research Symposium

Gopher tortoises are native to Florida and vital to the ecosystem due to the underground boroughs they build, which provide shelter to other animals, and for their key role in seed dispersion. In order to improve our understanding of the role of gopher tortoises on biodiversity, we aim to investigate the digestive track of gopher tortoises. Data on seed dispersion distance and gut retention time are critical to effective and efficient endangered plant species conservation efforts. In a multidisciplinary project between Department of Earth and Environment, College and Engineering, and the Miami Zoo, we are fabricating an ingestible device to …


Finite Element Analysis Of Impact Resistant Composites Inspired By Peacock Mantis Shrimp, Nandati Shrestha Apr 2021

Finite Element Analysis Of Impact Resistant Composites Inspired By Peacock Mantis Shrimp, Nandati Shrestha

Thinking Matters Symposium

The fist-like club of the peacock mantis shrimp, a 5-inch marine crustacean, can strike its prey with speed faster than a .22-caliber bullet with an impact force more than 1,000 times its own weight. Although these creatures punch so fast that it even boils the water, they don’t take any damage. This incredible insusceptibility is due to the arrangement of mineralized fiber layers in which each fibrous layer is laid at a slightly rotated angle to form a helicoidal structure that acts as a shock absorber for the club. The goal is to perform a finite element analysis to investigate …


Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker Aug 2018

Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Mussels and other marine creatures adhere very well in underwater environments, having the ability to withstand the force of the sea. These animals have inspired synthetic biomimetic adhesives for wet systems, presenting potential for biomedical applications. However, most current commercial adhesives tend to be brittle, not resisting repetitive movements. This study assesses toughening strategies to improve the mussel-inspired adhesives’ ductility while maintaining its strength. The strategies included altering the polymer’s chemical structure by changing the percentage of polyethylene glycol (PEG) in the molecule and by adding fillers, such as calcium carbonate, silica and nacre - a calcium carbonate compound found …


Dual Mechanism For Toughening And Sustained Aminoglycoside Elution From A Polyphosphate Hydrogel, Dwight D. Lane, Russell J. Stewart Phd Feb 2017

Dual Mechanism For Toughening And Sustained Aminoglycoside Elution From A Polyphosphate Hydrogel, Dwight D. Lane, Russell J. Stewart Phd

Biomedical Engineering Western Regional Conference

No abstract provided.


Dna Bound Avicel Network: The Beginnings Of A Self-Healing Material, Emily R. Coleman, Michael R. Ladisch, Eduardo Ximenes, Marissa Karp, Kathleen Howell, Seockmo Ku, Nathan Mosier, Iman Beheshti Tabar Aug 2016

Dna Bound Avicel Network: The Beginnings Of A Self-Healing Material, Emily R. Coleman, Michael R. Ladisch, Eduardo Ximenes, Marissa Karp, Kathleen Howell, Seockmo Ku, Nathan Mosier, Iman Beheshti Tabar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Self-healing materials could potentially provide many improvements to engineering projects, including reduced maintenance and cost, and increased lifespan. It is desired to create a self-healing material proof of concept, which can then be altered for eventual application to the surfaces of small satellites with the goal of increasing material lifetimes. The intrinsic properties and abilities of DNA base pairing will be studied as a first test of proof of concept. The exploratory research reported in this short communication utilizes oxidation of small (50µm) particles of Avicel using TEMPO, followed by activation of Avicel particles via an EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) …


Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs Aug 2015

Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cardiovascular thrombosis may result in critical ischemia to a range of anatomical regions, constituting a leading cause of death in the United States. Current invasive treatments for such arterial blockages often yield blood clot recurrence, resulting in repeated hospitalization of patients. This research aims to show how internally introduced pressure oscillations may be used to initiate thrombolysis. We present a novel computational model for determining the resonant frequency and corresponding deformation of an idealized thrombus. Sinusoidal pressure differences across the thrombus induce axial displacements of frequency dependent amplitude. The maximum peak displacement occurs at a resonant frequency of 73 Hz …


Towards An Optical In-Line Characterization Of Nano Petals, Yiming Ding, Huisung Kim, Euiwon Bae Aug 2015

Towards An Optical In-Line Characterization Of Nano Petals, Yiming Ding, Huisung Kim, Euiwon Bae

The Summer Undergraduate Research Fellowship (SURF) Symposium

Carbon Nano Petals (i.e. CNPs) are cantilevered multilayer grapheme sheets that are seeded from core graphite fibers. The resulting structure offers a possibility of minimizing interfacial losses in transport application, improved interactions with surrounding matrix materials in composites, and a route toward substrate independence for device applications. The mass production of CNPs on the substrate required a method that can provide synchronous feedback on the sample status without pulling them out of the production line. Different optical properties can be observed when surfaces with different roughness are illuminated with a highly coherent light such as a laser beam. Similarly, CNPs …


Surgical Adhesive From Mussel Mimetic Polymer, Jenna Desousa, Cori Jenkins, Jonathan Wilker Aug 2014

Surgical Adhesive From Mussel Mimetic Polymer, Jenna Desousa, Cori Jenkins, Jonathan Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Injuries involving damaged tissues are currently repaired through an invasive technique involving the use of screws, plates and sutures as support, which can damage these tissues. The biomedical field currently lacks an adhesive that can replace harmful implants. A surgical adhesive can provide a quick and easy alternative, which will minimize the risk of damaging healthy tissue in surgery. Inspiration for such materials can be found by looking at marine mussels as they are able to stick to nearly any surface, even in wet environments. Marine mussels affix themselves to different surfaces using adhesive plaques consisting of various proteins. Polymer …


Characterization Of Swelling Ratio And Water Content Of Hydrogels For Cartilage Engineering Applications, Emily E. Gill, Renay S.-C. Su, Julie C. Liu Aug 2014

Characterization Of Swelling Ratio And Water Content Of Hydrogels For Cartilage Engineering Applications, Emily E. Gill, Renay S.-C. Su, Julie C. Liu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Due to the high prevalence of arthritis and cartilage-related injuries, tissue engineers are studying ways to grow cartilage tissue replacements. Resilin, an elastomeric protein found in insect cuticles, is known for its extraordinary resilience and elasticity. In previous studies, recombinant resilin-based hydrogels, or cross-linked protein networks, exhibited potential for use in cartilage tissue scaffolds. Our lab successfully developed resilin-based proteins with a sequence based on the mosquito gene and showed that resilin-based hydrogels possess mechanical properties of the same order of magnitude as native articular cartilage. In addition, these mechanical properties can be controlled by changing the protein concentration. To …


Biological Implications Of Satellite Cells For Scaffold-Based Muscle Regenerative Engineering, Maggie R. Del Ponte, Charter Chain, Meng Deng Dr., Feng Yue Dr., Shihuan Kuang Dr. Aug 2014

Biological Implications Of Satellite Cells For Scaffold-Based Muscle Regenerative Engineering, Maggie R. Del Ponte, Charter Chain, Meng Deng Dr., Feng Yue Dr., Shihuan Kuang Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Satellite cells are anatomically localized along the surface of muscle fibers and have been regarded as a population of muscle-specific progenitors that are responsible for muscle regeneration. In response to muscle injuries, satellite cells are activated to enter the cell cycle, then proliferate and differentiate into mature muscle cells to regenerate damaged myofibers. Unfortunately, this natural repair mechanism is interrupted in conditions such as muscle degenerative diseases or volumetric muscle loss. The function of stem cells is regulated by signals from their local microenvironment which is called the stem cell niche. Current satellite cell-based strategies such as direct cell transplantation …


The Role Of Metal Oxide Layers In The Sensitivity Of Lactate Biosensors Subjected To Oxygen-Limited Conditions, Elizabeth Andreasen, Lia Stanciu, Aytekin Uzunoglu Aug 2014

The Role Of Metal Oxide Layers In The Sensitivity Of Lactate Biosensors Subjected To Oxygen-Limited Conditions, Elizabeth Andreasen, Lia Stanciu, Aytekin Uzunoglu

The Summer Undergraduate Research Fellowship (SURF) Symposium


Amperometric lactate biosensors are used to detect lactate concentration in blood and tissues, which is integral in identifying cyanide poisoning, septic shock, and athletic condition. The construction of lactate biosensors with high sensitivity, selectivity, and stability is imperative to diagnose and determine these medical conditions. Lactate detection is currently limited to oxygen-rich environments due to the fact that oxygen is a limiting factor in the lactate reaction. To circumvent this problem, researchers have developed mediators or alternate, oxygen-free enzymes to improve sensitivity. In our study, ceria (CeO2) with high oxygen storage capacity (OSC) was introduced to the enzyme …


Design And Fabrication Of A Novel Electrospinning System For Musculoskeletal Tissue Regeneration, Carter L. Chain, Maggie R. Del Ponte, Meng Deng, Feng Yue, Shihuan Kuang Aug 2014

Design And Fabrication Of A Novel Electrospinning System For Musculoskeletal Tissue Regeneration, Carter L. Chain, Maggie R. Del Ponte, Meng Deng, Feng Yue, Shihuan Kuang

The Summer Undergraduate Research Fellowship (SURF) Symposium

Disease and injury to human tissue, especially musculoskeletal tissue, is a prevalent concern to the public, affecting millions of people each year. Current treatment options involving autografts and allografts are hindered by limited availability and risk of immunogenicity, respectively. In order to overcome these limitations, a transdisiplinary regenerative engineering strategy has emerged with a focus on the development of biomimetic scaffolds that closely mimic the properties of the native tissues. For example, the structure of muscle tissue is characterized by oriented muscle fibers. However, fabrication of aligned nanofiber structures that mimic the anisotropic organization of muscle presents significant engineering challenges. …


Iron-Magnesium Alloy Bioabsorbable Blood Stent, Kaitlyn Jarry, L Stanciu Oct 2013

Iron-Magnesium Alloy Bioabsorbable Blood Stent, Kaitlyn Jarry, L Stanciu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bioabsorbable materials are fairly new and proper alloys for implantation in the body have not yet been established. There are a few polymers that have showed promise, but they do not provide the proper mechanical support that metal does. These materials would be used to create devices such as blood stents and orthopedic screws. Investigation into the properties of different alloys can help to establish a material that can be used for implanted devices that are only needed for a limited amount of time. In order to investigate these alloys many different experiments will to be run to test the …


Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Website), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Sheet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Program Booklet), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia Jun 2013

Materials Education And Research In Art And Design: A New Role For Libraries (Survey Stats), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

No abstract provided.


Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia Jun 2013

Materials Collection Creation And Administration: A New Role For Libraries (White Paper), Mark Pompelia

Materials Education and Research in Art and Design: A New Role for Libraries

The Problem/Opportunity: To define, identify, and guide design-based materials collections in academic settings and foster community among those with existing collections and/or those considering creating and supporting one.

Contents and topics:

  1. What is a materials collection?
  2. Why have a materials collection?
  3. Acquisition strategies
  4. Organizational approaches
  5. Programming possibilities
  6. Symposium summary
  7. Resources