Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert


Synthesis And Catalytic Property Of Flaked Spindle-Like Cuo Nanocrystals, Jian-Feng Fan, Li-Qing Li, Yu-Feng Huang, Lou-Zhen Fan May 2011

Synthesis And Catalytic Property Of Flaked Spindle-Like Cuo Nanocrystals, Jian-Feng Fan, Li-Qing Li, Yu-Feng Huang, Lou-Zhen Fan

Journal of Electrochemistry

A simple and efficient electrochemical route was developed for the synthesis of flaked spindle-like CuO nanocrystals using aqueous electrolyte and Cu sacrificial anode (graphite as the cathode) in an undivided cell at a constant potential mode under room temperature. The morphologies, structure and component of CuO nanocrystals obtained were characterized by SEM, XRD, respectively. Flaked spindle-like CuO nanocrystals were successfully used to modify a GC electrode to detect H2O2 with cyclic voltammetry (CV) and amperometric (AC).The results showed that products were pure monoclinic CuO nanocrystals. The linear range for the determination of hydrogen peroxide is from 1.0 μmol?L-1 to 1.0 …