Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Engineering Science and Materials

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong Dec 2019

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study In Electrochemical Reduction Of P-Nitrothiophenol, Yun Ling, Jing Tang, Guo-Kun Liu, Cheng Zong

Journal of Electrochemistry

P-nitrothiophenol (PNTP) is one of the most common probe molecules studied by surface-enhanced Raman spectroscopy (SERS). The research in electrochemical reduction behavior of PNTP will help understanding the mechanism for the nitrobenzene reduction. In this paper, we used transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to study the SERS of PNTP with cyclic voltammetry and chronoamperometry on gold electrodes. The results show that the TEC-SERS provide a time resolution that equals the transient electrochemical methods, and we concluded that the reaction was so quick that we did not observe the spectral information of intermediate species described in the literatures with a …


Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao Dec 2019

Electrochemical Sensor Based On Magnetic Electrode Modified With Magnetic Molecularly Imprinted Nanoparticles Immobilized Hemoglobin For Determination Of Hydrogen Peroxide, Yang Yuan, Jia-Xin Wang, Yu-Hua Cao

Journal of Electrochemistry

In this work, the surface-imprinted technique was used to prepare magnetic hemoglobin (Hb) imprinted nanoparticles, using Fe3O4@SiO2 NPs as the carrier, Hb as the template molecule, and tetraethyl orthosilicate (TEOS) as the imprinted polymer monomer. The nanoparticles had a core-shell structure, with magnetic Fe3O4 NPs as the core and Hb imprinted polymers as the shell. Therefore, Hb could be concentrated and fixed on the surface of the magnetic imprinted nanoparticles (MMIPs NPs). Furthermore, MMIPs NPs were immobilized with chitosan (CS) on the surface of a magnetic electrode to constitute Hb enzyme-like biosensor …


Ionic Liquid Assisted Synthesis Of Porous Carbons From Rice Husk For Supercapacitors, Han-Fang Zhang, Feng Wei, Jian Sun, Meng-Ying Jing, Xiao-Jun He Dec 2019

Ionic Liquid Assisted Synthesis Of Porous Carbons From Rice Husk For Supercapacitors, Han-Fang Zhang, Feng Wei, Jian Sun, Meng-Ying Jing, Xiao-Jun He

Journal of Electrochemistry

It is still a challenge to prepare carbon materials with high specific surface area at low cost from renewable resources. Herein, the authors report an efficient approach to synthesize porous carbons (PCs) from rice husk with ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6)) as a template and an activation agent. The as-made PCs featured the high specific surface area up to 1438 m2·g-1. As electrodes for supercapacitors, PCs showed a high specific capacitance of 256 F·g-1 at 0.05 A·g-1 in 6 mol·L-1 KOH aqueous electrolyte and a good rate performance of 211 F·g …


Zif-67-Derived Ag/Co-Embedded N-Enriched Mesoporous Carbon For Oxygen Reduction Reaction, Zheng-Ling Di, Jing Zhu, Lei Dai, Wei Meng, Yue-Hua Li, Zhang-Xing He, Ling Wang Dec 2019

Zif-67-Derived Ag/Co-Embedded N-Enriched Mesoporous Carbon For Oxygen Reduction Reaction, Zheng-Ling Di, Jing Zhu, Lei Dai, Wei Meng, Yue-Hua Li, Zhang-Xing He, Ling Wang

Journal of Electrochemistry

Nitrogen-doped porous carbon materials are considered as one of the most promising catalysts for oxygen reduction reaction (ORR). Herein, in order to further improve the activity of the nitrogen-doped porous carbon, Ag/Co bimetal is embedded into nitrogendoped porous carbon to form Ag/Co-embedded nitrogen-doped porous carbon material (AgCo@NC). The AgCo@NC was derived by the wet impregnation of Ag+ into ZIF-67 precursor, followed by chemical reduction and a subsequent pyrolysis process under Ar atmosphere at different temperatures (500 ℃, 600 ℃, 700 ℃). The morphologic characterization shows that the Ag/Co nanoparticles were successfully embedded in the mesoporous carbon framework with abundant nitrogen …


Influences Of Morphology And Nitrogen Doping On The Electrocatalytic Characteristics For Oxygen Reduction Reaction Of Nio/Rgo, Dong Liang, Heng-Yi Fang, Shuo Yao, Jie-Mei Yu, Zhao-Liang Zhang, Zhan-Kun Jiang, Xue-Ping Gao, Tai-Zhong Huang Oct 2019

Influences Of Morphology And Nitrogen Doping On The Electrocatalytic Characteristics For Oxygen Reduction Reaction Of Nio/Rgo, Dong Liang, Heng-Yi Fang, Shuo Yao, Jie-Mei Yu, Zhao-Liang Zhang, Zhan-Kun Jiang, Xue-Ping Gao, Tai-Zhong Huang

Journal of Electrochemistry

In this research, the reduced graphene oxide (rGO) supported sheet-like NiO (NiO/rGO) and spherical-like NiO (NiO/N-rGO) catalysts for oxygen reduction reaction (ORR) were prepared. The structures, morphologies and chemical states of the two catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical catalytic performance of the two catalysts for ORR were investigated by cyclic voltammetry (CV), Tafel, linear sweeping voltammetry (LSV), rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) tests. Electrochemical results showed that the current density and onset potential (about 0.89 V) …


Special Issue: Electrocatalysis And Fuel Cells, Shuangyin Wang Oct 2019

Special Issue: Electrocatalysis And Fuel Cells, Shuangyin Wang

Journal of Electrochemistry

Around electrocatalysis and fuel cell, this album contains 7 research papers and reviews written by these teams with rich accumulation and influence in related research fields. This album partly reflects the research progress in the design, synthesis and performance of electrocatalysts in China. With the publication of this special issue, it is hoped that readers will have a better understanding of the current research situation in this field in China. To promote the further development of electrocatalytic chemistry and new fuel cell research in China.


Three-Dimensional Porous Vn Octahedron Catalyst With High Electrocatalytic Efficiency Toward Hydrogen Evolution Reaction, Can Yin, Wei-Wei Fu, Ling Fang, Shi-Li You, Hui-Juan Zhang, Yu Wang Oct 2019

Three-Dimensional Porous Vn Octahedron Catalyst With High Electrocatalytic Efficiency Toward Hydrogen Evolution Reaction, Can Yin, Wei-Wei Fu, Ling Fang, Shi-Li You, Hui-Juan Zhang, Yu Wang

Journal of Electrochemistry

With the rapid development of China’s economy, the demand for energy is increasing, and environmental problems are becoming more and more serious. The development and utilization of highly-clean new energy fuel can effectively alleviate the energy crisis and environmental pollution. Nowadays, exploring high-efficiency, environment-friendly and low-cost catalysts remains the focus of research in the hydrogen evolution reaction (HER). In this research, firstly, we proposed a three-dimensional porous vanadium nitride (VN) with octahedral structure, which was prepared by a calcination treatment method. The VN catalyst showed a good electrocatalytic activity toward HER, involving a small overpotential of 94.0 mV at -10 …


A Facile Route To Synthesize Pt-Wo3 Nanosheets With Enhanced Electrochemical Performance For Her, Peng-Jie Jiang, Yi Lv, Chang-Miao Chen, Hong-Cheng He, Yong Cai, Ming Zhang Oct 2019

A Facile Route To Synthesize Pt-Wo3 Nanosheets With Enhanced Electrochemical Performance For Her, Peng-Jie Jiang, Yi Lv, Chang-Miao Chen, Hong-Cheng He, Yong Cai, Ming Zhang

Journal of Electrochemistry

Platinum-tungsten trioxide (Pt-WO3) nanosheets were synthesized on nickel foams (NFs) directly. As great conductive networks, NFs substrates could greatly improve the electrode performance of WO3. The modified platinum nanoparticles not only enhanced the electron transformation of catalysts, but also increased the active sites for hydrogen evolution reaction (HER). Pt-WO3/NF revealed a better catalytic activity than WO3/NFs with a smaller Tafel slope (80 mV·dec-1) and a lower overpotential of 72 mV at the current density of 10 mA·cm-2. In addition, Pt-WO3/NF showed great durability and stability during …


Pd Nanoparticles Supported On The Etched Ni Foams As High-Performance Electrocatalysts For Direct Ethanol Fuel Cells, Chi Zhang, Cheng-Fei Li, Gao-Ren Li Oct 2019

Pd Nanoparticles Supported On The Etched Ni Foams As High-Performance Electrocatalysts For Direct Ethanol Fuel Cells, Chi Zhang, Cheng-Fei Li, Gao-Ren Li

Journal of Electrochemistry

The development of non-Pt anode electrocatalysts with high activity and long-term durability at low cost for fuel cells still remains enormous challenge. Here we report the Pd nanoparticles supported on Ni foams etched by the mixed acids (HNO3+H2SO4+H3PO4+CH3COOH) (Pd/ME-NF) that are designed and fabricated as high-performance electrocatalysts for ethanol oxidation in alkaline media. Because of the advantages of large open space, fast electrolyte penetration/diffusion and rapid electron transfer process, the Pd/ME-NF catalysts exhibited significantly improved electrocatalytic activity and durability compared with the commercial Pd/C catalysts.


Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang Aug 2019

Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang

Journal of Electrochemistry

As the situation of energy crisis and environmental pollution become more and more serious, the electrochemical reduction of carbon dioxide (CO2) has attracted lots of attention because of its multiple meanings such as environment, resources and economic benefits. In this paper, the state of the art electrochemical reduction of CO2 in aqueous solution is reviewed, and the latest research progress in Cu-based catalysts with different structures and morphologies is summarized. In the end, the application prospects, opportunities and challenges of Cu-based materials are briefly presented to provide an outlook for future research directions.


Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen Aug 2019

Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen

Journal of Electrochemistry

Efficient and low-cost oxygen reduction reaction (ORR) electrocatalyst plays a key role for fuel cells. In this paper, ORR active metal organic framework (MOF: Cu-bipy-BTC, bipy = 2,2?-bipyridine, BTC = 1,3,5-tricarboxylate) was prepared using hydrothermal method, and then carbon-based material MOF-800 was obtained from pyrolyzing Cu-bipy-BTC at 800 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption isotherm and X-ray photolectron spectroscopy (XPS) were used to characterize the morphologies and structures of the catalysts. Linear sweep voltammetry (LSV) and current-time curve (i-t) were adopted to evaluate the electrocatalytic properties of the catalysts. …


Electrocatalytic Reduction Of Carbon Dioxide To Carbon Monoxide Using Cobalt Nitride, Chen Ma, Peng-Fei Hou, Peng Kang Aug 2019

Electrocatalytic Reduction Of Carbon Dioxide To Carbon Monoxide Using Cobalt Nitride, Chen Ma, Peng-Fei Hou, Peng Kang

Journal of Electrochemistry

Electrocatalytic reduction of carbon dioxide (CO2) is a promising method to alleviate global warming issues, although it still faces many challenges. Herein, we report cobalt nitride for electrocatalytic reduction of CO2 to carbon monoxide (CO) in an aqueous electrolyte. A comparison of catalysts with different preparation temperatures and atmospheres suggests that nitrogen doping is critical to improve catalytic activity. For the most active catalyst of 700-Co5.47N/C, the CO current density reached 9.78 mA·cm-2 at potential of -0.7 V vs. RHE. In addition, the CO/H2 ratio could be adjusted from 1:3 to 3:2 by …


Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang Aug 2019

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang

Journal of Electrochemistry

A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to …


Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu Aug 2019

Effect Of Morphology Of Fe-N Codoped Carbon Nanomaterial On Electrochemical Reduction Reactions, Er-Ling Li, Fa Yang, Ming-Bo Ruan, Ping Song, Wei-Lin Xu

Journal of Electrochemistry

Graphene nanosheets (GS) and carbon nanotubes have been considered as good catalysts candidates for applications in energy conversion and storage. However, hybrids of GS and carbon nanotubes are always formed in transition metal-based nitrogen-doped system, making the system quite complex for exploring the structure-activity relationship. To prepare the catalysts with desired species controllably, we try to adjust the outcomes with the effect of nitrogen on the growth of carbon nanotubes. In this work, a series of Fe-N co-doped carbon hybrid catalysts containing N-doped GS or hybrids of GS/bamboo carbon nanotubes (BCNTs) or BCNTs were obtained with one-step pyrolyzed method. To …


Single-Layer Oxygen Deficiency Δ-Mno2 For Electrochemical Co2 Reduction, Yue-Feng Zhang, Jian-Jun Liu, Zeng-Xi Wei, Xin-Xin Tian, Jian-Min Ma Aug 2019

Single-Layer Oxygen Deficiency Δ-Mno2 For Electrochemical Co2 Reduction, Yue-Feng Zhang, Jian-Jun Liu, Zeng-Xi Wei, Xin-Xin Tian, Jian-Min Ma

Journal of Electrochemistry

Manganese dioxide (MnO2) has been widely used in catalysis. In addition, since the defect engineering can change the electronic properties of the catalyst, here we have systematically studied electrocatalytic carbon dioxide reduction reaction (CO2RR) on δ-MnO2 with and without oxygen deficiency, denoted as Ov-MnO2 and MnO2, respectively. We calculate the electronic properties and the intermediate of free energy for MnO2 and Ov-MnO2 with the help of spin-polarized density functional theory. By analyzing this result, we can find that the introduction of defects change the δ-MnO2 from semiconducting properties …


Preface To Special Issue Of Electrochemical Reduction Of Carbon Dioxide, Qing Li, Min Liu Aug 2019

Preface To Special Issue Of Electrochemical Reduction Of Carbon Dioxide, Qing Li, Min Liu

Journal of Electrochemistry

No abstract provided.


Recent Advances In Bismuth-Based Co2 Reduction Electrocatalysts, Rui Zhou, Na Han, Yan-Guang Li Aug 2019

Recent Advances In Bismuth-Based Co2 Reduction Electrocatalysts, Rui Zhou, Na Han, Yan-Guang Li

Journal of Electrochemistry

Carbon dioxide (CO2) is an economical, secure and sustainable carbon resource around us. Its effective capture and recycling have been the focus of our entire society. Using the electrochemical method, CO2 can be reduced to different value-added chemicals or fuels. This approach not only would mitigate CO2 accumulation in the atmosphere, but also would help alleviate our dependence on fossil fuel. In this article, the basic principle and process of electrochemical CO2 reduction are first introduced. The recent development in bismuth-based catalysts for electrocatalytic CO2 reduction is reviewed with an emphasis on their preparation, …


Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang Aug 2019

Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang

Journal of Electrochemistry

Low-temperature carbon dioxide (CO2) electrochemical reduction technology is a hotspot for research and development in recent years as a way to reduce the negative impact of CO2 on the environment and to generate energy storage through converting electricity to low-carbon fuels. Although basic research on catalyst activity, product selectivity, and reaction mechanism has been widely reported, the design and practicality of catalytic stability and corresponding electrochemical reactor systems have not been given sufficient attention and systematic development. In this paper, two important factors affecting the development of CO2 electrochemical reduction technology in low temperature aqueous solution …


Copper-Based Compounds For Electrochemical Reduction Of Carbon Dioxide, Fan Yang, Pei-Lin Deng, You-Jia Han, Pan Jing, Bao-Yu Xia Aug 2019

Copper-Based Compounds For Electrochemical Reduction Of Carbon Dioxide, Fan Yang, Pei-Lin Deng, You-Jia Han, Pan Jing, Bao-Yu Xia

Journal of Electrochemistry

The electrochemical reduction of carbon dioxide (CO2) to useful chemicals and fuels has attracted enormous interest since the deteriorating global warming and energy shortage problems resulted from ever-increasing CO2 emission. Designing efficient catalysts is of capital significance to realize the efficient and selective conversion of CO2. Among various catalysts explored, copper-based compounds have promising potentials with acceptable efficiency for hydrocarbon production. Herein, recent advances on copper-based materials are summarized for electrochemical CO2 conversion. We intend to include the dimensional structure, different forms (alloy, oxide) and molecular catalysts in copper-based catalysts. Moreover, the reaction mechanisms …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng Apr 2019

Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng

Journal of Electrochemistry

The development of low-cost, high-performance cathode catalysts is critical for practical application of fuel cells. Here, the N, P-doped porous graphene-like carbon with outstanding oxygen reduction reaction (ORR) performance was synthesized by pyrolysis of surplus sludge, which functioned as a self-doped, self-activated, and self-templated precursor by acclimation with continuous feedings of phenol. The results show that the amounts of microorganisms were enriched after acclimation, with increasing contents of N, P, Fe, as well as C atoms. The increasing pyrolysis temperature resulted in the formation of an ordered graphitic structure, however, the excessively high temperature induced the drop in the amounts …


Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu Feb 2019

Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu

Journal of Electrochemistry

Lithium-air battery has been considered to be one of the most promising secondary battery systems because of its high energy density. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode, and the high overpotential, poor cycle stability and low rate capacity have severely blocked the development and application of Li-air battery. One of the effective strategies to alleviate these issues is to develop cathode catalysts for Li-air batteries. The design and development of bifunctional cathode catalysts with high activity and efficiency on both ORR and OER is highly desired for Li-air …


Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao Feb 2019

Synthesis Of Flower-Like Vanadium Disulfide For Lithium Storage Application, Pan Li, Jian Liu, Wei-Yi Sun, Hai-Xia Li, Zhan-Liang Tao

Journal of Electrochemistry

In order to improve the electrochemical properties of vanadium disulfide (VS2) as an electrode material in Li-ion battery, the flower-like VS2 was prepared by a one-step hydrothermal method with the addition of polyethylene glycol 400. The phase and morphology of the product were characterized by using X-ray diffraction and field emission scanning electron microscopy. During the growth process, it was observed that the flower-like VS2 was interspersed with several hexagonal vanadium disulfide nanosheets, which had a high specific surface area and excellent structural stability. The flower-like VS2 was used for the cathode material test in …


Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li Feb 2019

Ni/Mn3O4/Nimn2O4 Double-Shelled Hollow Spheres Embedded Into Reduced Graphene Oxide As Advanced Anodes For Sodium-Ion Batteries, Chong Yan, Hua-Ri Kou, Bo Yan, Xiao-Jing Liu, De-Jun Li, Xi-Fei Li

Journal of Electrochemistry

Delicately building the unique nanocomposite with the combination of hollow structure and reduced graphene oxide (rGO) is highly desirable and still remains a great challenge in the field of energy conversion and storage. In this work, Ni/Mn3O4/NiMn2O4 double-shelled hollow spheres coated by rGO (denoted as R-NMN) have been successfully synthetized via one-step rapid solvothermal treatment followed by subsequent annealing for the first time. Served as anodes for sodium ion batteries (SIBs), the R-NMN composite containing 25wt% rGO exhibits a high discharge capacity of 187.8 mAh·g-1 after 100 cycles at 50 mA·g-1 …