Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Polymer Science

PEMFC

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He Dec 2013

Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He

Doctoral Dissertations

Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the adhesion force strengthens …


Structure And Morphology Of Sulfonated Polysulfone And Perfluorosulfonic Acid Ionomers, Chen Wang Aug 2013

Structure And Morphology Of Sulfonated Polysulfone And Perfluorosulfonic Acid Ionomers, Chen Wang

Doctoral Dissertations

The limitations of conventional perfluorosulfonic acid (PFSA) based membrane materials have provoked the search for alternative materials which can function as the electrolyte in PEM fuel cells operated at higher temperatures (> 100 °C) and without humidification. A novel class of sulfonated poly(phenylene) sulfone (sPSO2) ionomers have shown much higher proton conductivity than typical PFSA membranes at elevated temperatures. In this dissertation, both computational and experimental methods were used to investigate proton transfer, morphological and structural properties of sPSO2 and PFSA ionomers. We have undertaken ab initio electronic structure calculations to understand the primary hydration and the transfer of protons …