Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Physics

Cavity

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano Jan 2022

Nb₃Sn Coating Of A 2.6 Ghz Srf Cavity By Sputter Deposition Technique, M. S. Shakel, Wei Cao, H. Elsayed-Ali, G. V. Eremeev, U. Pudasaini, A. M. Valente-Feliciano

Electrical & Computer Engineering Faculty Publications

Nb₃Sn is of interest as a coating for SRF cavities due to its higher transition temperature Tc ~18.3 K and superheating field Hsh ~400 mT, both are twice that of Nb. Nb₃Sn coated cavities can achieve high-quality factors at 4 K and can replace the bulk Nb cavities operated at 2 K. A cylindrical magnetron sputtering system was built, commissioned, and used to deposit Nb₃Sn on the inner surface of a 2.6 GHz single-cell Nb cavity. With two identical cylindrical magnetrons, this system can coat a cavity with high symmetry and uniform thickness. Using Nb-Sn multilayer sequential sputtering followed by …


Magnetron Sputtering Of Nb3Sn For Srf Cavities, Md. N. Sayeed, H. Elsayed-Ali, G. V. Eremeev, M. J. Kelley, U. Pudasaini, C. E. Reece Jan 2018

Magnetron Sputtering Of Nb3Sn For Srf Cavities, Md. N. Sayeed, H. Elsayed-Ali, G. V. Eremeev, M. J. Kelley, U. Pudasaini, C. E. Reece

Electrical & Computer Engineering Faculty Publications

Nb3Sn is a potential candidate for surface material of SRF cavities since it can enable the cavity to operate at higher temperatures with high quality factor and at an increased accelerating gradient. Nb-Sn films were deposited using magnetron sputtering of individual Nb and Sn targets onto Nb and sapphire substrates. The as-deposited films were annealed at 1200 °C for 3 hours. The films were characterized for their structure by X-ray Diffraction (XRD), morphology by Field Emission Scanning Electron Microscopy (FESEM), and composition by Energy Dispersive X-ray Spectroscopy (EDS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The …