Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Engineering Science and Materials

Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2023

Effect Of Platelet Length And Stochastic Morphology On Flexural Behavior Of Prepreg Platelet Molded Composites, Siavash Sattar, Benjamin Beltran Laredo, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Prepreg platelet molding compound (PPMC) can be used to create structural grade material with a heterogeneous mesoscale morphology. The present work considered various platelet lengths of the prepreg system IM7/8552 to study the effect of platelet length on the flexural behavior of PPMC composite. A progressive failure finite-element analysis was used to understand competing failure modes in PPMC with the different platelet length. The interlaminar and in-plane damage mechanisms were employed to describe complex failure modes within the mesostructure of PPMCs. Experimental results of the flexural tests of the PPMC with different platelet length sizes were used to validate the …


Post-Weld Heat Treatment Effects On Microstructure, Crystal Structure, And Mechanical Properties Of Donor Stir–Assisted Friction Stir Welding Material Of Aa6061-T6 Alloy, Aiman H. Al-Allaq, Manish Ojha, Yousuf S. Mohammed, Srinivasa N. Bhukya, Zhenhua Wu, Abdelmageed A. Elmustafa Jan 2023

Post-Weld Heat Treatment Effects On Microstructure, Crystal Structure, And Mechanical Properties Of Donor Stir–Assisted Friction Stir Welding Material Of Aa6061-T6 Alloy, Aiman H. Al-Allaq, Manish Ojha, Yousuf S. Mohammed, Srinivasa N. Bhukya, Zhenhua Wu, Abdelmageed A. Elmustafa

Mechanical & Aerospace Engineering Faculty Publications

Friction stir welding (FSW) technology combines heat input from friction and extreme plastic deformation to produce high-quality joints in aluminum and other alloy systems. This necessitates examining the final welded joint’s mechanical and structural properties. Post-weld heat-treated AA6061-T6 alloy that resulted from the application of a Cu donor stir–assisted (CDSA) friction stir welding (FSW) material was examined for crystal structure and mechanical properties. CDSA FSW samples were tested at a constant tool rotational speed of 1400 rpm and a welding translational speed of 1 mm/s. CDSA samples of 20% and 60% thickness of the AA6061-T6 base alloy were selected to …


Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala Jan 2021

Fluid-Wall Interactions In Pseudopotential Lattice Boltzmann Models, Cheng Peng, Luis F. Ayala, Orlando M. Ayala

Engineering Technology Faculty Publications

Designing proper fluid-wall interaction forces to achieve proper wetting conditions is an important area of interest in pseudopotential lattice Boltzmann models. In this paper, we propose a modified fluid-wall interaction force that applies for pseudopotential models of both single-component fluids and partially miscible multicomponent fluids, such as hydrocarbon mixtures. A reliable correlation that predicts the resulting liquid contact angle on a flat solid surface is also proposed. This correlation works well over a wide variety of pseudopotential lattice Boltzmann models and thermodynamic conditions.


Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic Jan 2019

Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic

Engineering Technology Faculty Publications

Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation …


Comment On "Roles Of Bulk Viscosity On Rayleigh-Taylor Instability: Non-Equilibrium Thermodynamics Due To Spatio-Temporal Pressure Fronts" Phys. Fluids 28, 094102 (2016), Robert L. Ash Feb 2017

Comment On "Roles Of Bulk Viscosity On Rayleigh-Taylor Instability: Non-Equilibrium Thermodynamics Due To Spatio-Temporal Pressure Fronts" Phys. Fluids 28, 094102 (2016), Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

No abstract provided.


Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George Feb 2017

Preface To Special Topic: A Tribute To John Lumley, Kiran Bhaganagar, Thomas B. Gatski, William K. George

CCPO Publications

This Special Topic Section is dedicated to the life and memory of John Leask Lumley(1930-2015), professor and scientist extraordinaire.


Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala Jan 2016

Secondary Flow Of Liquid-Liquid Two-Phase Fluids In A Pipe Bend, M. Ayala, P. Santos, G. Hamester, O. Ayala

Engineering Technology Faculty Publications

A simulated study of oil and water in 90 degree bend was carried on COMSOL 5.1 to characterize flow pattern and analyze the secondary flow. The Euler-Euler k-e Reynolds Averaged Navier-Stokes model was used to represent the fluid motion. Changes in the Reynolds number, curvature ratio and direction of gravity were made to evaluate the effects in the intensity of the secondary flow. In the end, it was possible to see that the bend direction does not affect the formation of secondary flow for Reynolds above 100,000. It appears that the fluid behavior on the pipe bend is strongly related …


The Effect Of Noise On The Response Of A Vertical Cantilever Beam Energy Harvester, Michael I. Friswell, Onur Bilgen, S. Faruque Ali, Grzegorz Litak, Sondipon Adhikari May 2015

The Effect Of Noise On The Response Of A Vertical Cantilever Beam Energy Harvester, Michael I. Friswell, Onur Bilgen, S. Faruque Ali, Grzegorz Litak, Sondipon Adhikari

Mechanical & Aerospace Engineering Faculty Publications

An energy harvesting concept has been proposed comprising a piezoelectric patch on a vertical cantilever beam with a tip mass. The cantilever beam is excited in the transverse direction at its base. This device is highly nonlinear with two potential wells for large tip masses, when the beam is buckled. For the pre-buckled case considered here, the stiffness is low and hence the displacement response is large, leading to multiple solutions to harmonic excitation that are exploited in the harvesting device. To maximise the energy harvested in systems with multiple solutions the higher amplitude response should be preferred. This paper …


Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang Jan 2015

Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang

Engineering Technology Faculty Publications

In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope ["An examination of forcing in direct numerical simulations of turbulence," Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds …


Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski Jan 2015

Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski

Engineering Technology Faculty Publications

Within the context of heavy particles suspended in a turbulent airflow, we study the effects of gravity on acceleration statistics and radial relative velocity (RRV) of inertial particles. The turbulent flow is simulated by direct numerical simulation (DNS) on a 2563 grid and the dynamics of O(106) inertial particles by the point-particle approach. For particles/droplets with radius from 10 to 60 µm, we found that the gravity plays an important role in particle acceleration statistics: (a) a peak value of particle acceleration variance appears in both the horizontal and vertical directions at a particle Stokes number …


Complementarities Of Probabilistic And Evidence Approaches: An Uncertainty Assessment For Selection Of Composite Material, Stella B. Bondi, Resit Unal, Patrick T. Hester, Trina M. Chytka Jul 2013

Complementarities Of Probabilistic And Evidence Approaches: An Uncertainty Assessment For Selection Of Composite Material, Stella B. Bondi, Resit Unal, Patrick T. Hester, Trina M. Chytka

Engineering Technology Faculty Publications

A complimentary probabilistic and evidence theory approach is utilized to enhance uncertainty assessments in the area of critical safety characteristics for conceptual design. This research provides additional exploration into the failure modes necessary to utilize Fiber Reinforced Polymer (FRP) and various composites to their fullest potential and to minimize uncertainty by comparing probability and evidence theories. This combined approach has been applied to a selection of composite material that could provide uncertainty assessment design for a space transportation system. Uncertainty estimates presented are bounded by belief and plausibility functions. The results may provide additional information to the decision makers in …


Non-Equilibrium Pressure Control Of The Height Of A Large-Scale, Ground-Coupled, Rotating Fluid Column, R. L. Ash, I. R. Zardadhkan Jan 2013

Non-Equilibrium Pressure Control Of The Height Of A Large-Scale, Ground-Coupled, Rotating Fluid Column, R. L. Ash, I. R. Zardadhkan

Mechanical & Aerospace Engineering Faculty Publications

When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from …


The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar Jan 2011

The Influence Of Pressure Relaxation On The Structure Of An Axial Vortex, Robert L. Ash, Irfan Zardadkhan, Allan J. Zuckerwar

Mechanical & Aerospace Engineering Faculty Publications

Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and …


Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash Jan 2009

Volume Viscosity In Fluids With Multiple Dissipative Processes, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a reacting fluid with multiple dissipative processes. The procedure, as in the case of a single dissipative process, yields two dissipative terms in the Navier-Stokes equation: The first is the traditional volume viscosity term, proportional to the dilatational component of the velocity; the second term is proportional to the material time derivative of the pressure gradient. Each dissipative process is assumed to be independent of the others. In a fluid comprising a single constituent with multiple relaxation processes, the relaxation times of the multiple processes are …


Understanding Practical Limits To Heavy Truck Drag Reduction, Drew Landman, Richard Wood, Whitney Seay, John Bledsoe Jan 2009

Understanding Practical Limits To Heavy Truck Drag Reduction, Drew Landman, Richard Wood, Whitney Seay, John Bledsoe

Mechanical & Aerospace Engineering Faculty Publications

A heavy truck wind tunnel test program is currently underway at the Langley Full Scale Tunnel (LFST). Seven passive drag reducing device configurations have been evaluated on a heavy truck model with the objective of understanding the practical limits to drag reduction achievable on a modern tractor trailer through add-on devices. The configurations tested include side skirts of varying length, a full gap seal, and tapered rear panels. All configurations were evaluated over a nominal 15 degree yaw sweep to establish wind averaged drag coefficients over a broad speed range using SAE J1252. The tests were conducted by first quantifying …


Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash Jan 2006

Response To "Comment On Variational Approach To The Volume Viscosity Of Fluids" [Phys. Fluids 18, 109101 (2006)], Allen J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

We respond to the Comment of Markus Scholle and therewith revise our material entropy constraint to account for the production of entropy. (c) 2006 American Institute of Physics.


Variational Approach To The Volume Viscosity Of Fluids, Allan J. Zuckerwar, Robert L. Ash Jan 2006

Variational Approach To The Volume Viscosity Of Fluids, Allan J. Zuckerwar, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The variational principle of Hamilton is applied to develop an analytical formulation to describe the volume viscosity in fluids. The procedure described here differs from those used in the past in that a dissipative process is represented by the chemical affinity and progress variable (sometimes called "order parameter") of a reacting species. These state variables appear in the variational integral in two places: first, in the expression for the internal energy, and second, in a subsidiary condition accounting for the conservation of the reacting species. As a result of the variational procedure, two dissipative terms appear in the Navier-Stokes equation. …


An Apparatus For Measuring The Thermal Conductivity Of Cast Insulation Materials, Christine A. Wilkins, Robert L. Ash Jul 1980

An Apparatus For Measuring The Thermal Conductivity Of Cast Insulation Materials, Christine A. Wilkins, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

A steady-state apparatus has been developed for measuring the thermal conductivity of cast materials. The design has employed a novel thermal symmetry arrangement which can permit total electrical isolation of the test material from its surroundings. © 1980 American Institute of Physics


Effect Of Compliant Wall Motion On Turbulent Boundary Layers, Dennis M. Bushness, Jerry N. Hefner, Robert L. Ash Jan 1977

Effect Of Compliant Wall Motion On Turbulent Boundary Layers, Dennis M. Bushness, Jerry N. Hefner, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

A critical analysis of available compliant wall data which indicated drag reduction under turbulent boundary layers is presented. Detailed structural dynamic calculations suggest that the surfaces responded in a resonant, rather than a compliant, manner. Alternate explanations are given for drag reductions observed in two classes of experiments: (1) flexible pipe flows and (2) water-backed membranes in air. Analysis indicates that the wall motion for the remaining data is typified by short wavelengths in agreement with the requirements of a possible compliant wall drag reduction mechanism recently suggested by Langley. Copyright © 1977 American Institute of Physics.