Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering Science and Materials

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …


Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros Jan 2023

Electromagnetic Theory And Applications, Nicholas Madamopoulos, George Kliros

Open Educational Resources

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Floquet Topological Insulators For Sound, Romain Fleury, Alexander B. Khanikaev, Andrea Alu Jun 2016

Floquet Topological Insulators For Sound, Romain Fleury, Alexander B. Khanikaev, Andrea Alu

Publications and Research

The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines Feb 2015

Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines

Dissertations, Theses, and Capstone Projects

Specifically, the project involves the development of a diversified array of nanostructured gas-sensors comprised of selectively, novel surface-functionalized carbon nanotubes (for analyte selectivity by virtue of functionality). Harnessing carbon nanotubes with various electron withdrawing and donating groups help in determining their affinity toward certain prognostic gaseous markers thus increasing specificity of such created sensors. We have devised synthetic routes that have led to the facile production of covalently polyfunctionalized nanotubes in high yield. Seven carbon nanotube analogues were systematically considered and then chemically synthesized, from pristine single-walled nanotubes (SWNT's), for use as the main component of sensory units that was …


Synthesis And Characterization Of A Novel Polyacetal & Design And Preparation Of Superhydrophobic Photocatalytic Surfaces, Yuanyuan Zhao Feb 2015

Synthesis And Characterization Of A Novel Polyacetal & Design And Preparation Of Superhydrophobic Photocatalytic Surfaces, Yuanyuan Zhao

Dissertations, Theses, and Capstone Projects

Polyacetal polymers are thermoplastic resins that play an important role in industry because of numerous industrial applications including automobile; household appliance; etc. The first part of this thesis (Chapter 2) is about the synthesis of a new acetal copolymer that exhibits superior thermal stability. The second part of this thesis (Chapter 3) is about the preparation and applications of TiO2-based polymer nanocomposite films, where the reactive oxygen species (ROS) are generated on the solid surface. Catalytic nanocomposite films are an active area of research because of their potential uses for environmental remediation and chemical synthesis. Furthermore, to …


Synthesis And Evaluation Of Sensitizer Drug Photorelease Chemistry: Micro-Optic Method Applied To Singlet Oxygen Generation And Drug Delivery, Goutam Ghosh Oct 2014

Synthesis And Evaluation Of Sensitizer Drug Photorelease Chemistry: Micro-Optic Method Applied To Singlet Oxygen Generation And Drug Delivery, Goutam Ghosh

Dissertations, Theses, and Capstone Projects

This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) …


Synthesis, Fabrication And Characterization Of Magnetic And Dielectric Nanoparticles And Nanocomposite Films, Xiaohua Liu Oct 2014

Synthesis, Fabrication And Characterization Of Magnetic And Dielectric Nanoparticles And Nanocomposite Films, Xiaohua Liu

Dissertations, Theses, and Capstone Projects

Materials science is an interdisciplinary field investigating the structure-property relationship in solid-state materials scientifically and technologically. Nanoscience is concerned with the distinctive properties that matter exhibits when confined to physical dimensions on the order of 10-9 meters. At these length scales, behaviors of particles or elaborate structures are often governed by the rules of quantum mechanics in addition to the physical properties associated with the bulk material.

The work reported here seeks to employ nanocystals, binary nanocomposites and thin films of materials, to build versatile, functional systems and devices. With a focus on dielectric, ferroelectric, and magnetoelectric performance, a …


Characterization Of Wide Band Gap Semiconductors And Multiferroic Materials, Bo Cai Oct 2014

Characterization Of Wide Band Gap Semiconductors And Multiferroic Materials, Bo Cai

Dissertations, Theses, and Capstone Projects

Structural, optical and electrical properties of zinc oxide (ZnO), aluminum nitride (AlN), and lutetium ferrite (LuFe2O4) have been investigated. Temperature dependent Hall Effect measurements were performed between 80 and 800 K for phosphorus (P) and arsenic (As) doped ZnO thin films grown on c-plane sapphire substrate by RF magnetron sputtering. These samples exhibited n-type conductivity throughout the temperature range with carrier concentration of 3.85 × 10 16 cm-3 and 3.65 × 10 17 cm-3 at room temperature for P-doped and As-doped ZnO films, respectively. The Arrhenius plots of free electron concentration of those doped samples showed …


Metal Nanoparticles Immobilized On Basic Supports As Catalysts For Hydrogenation And Dehydrogenation Reactions Of Relevance To Cleaner Fossil Fuels And Alternative Sources Of Energy, Reena Rahi Jun 2014

Metal Nanoparticles Immobilized On Basic Supports As Catalysts For Hydrogenation And Dehydrogenation Reactions Of Relevance To Cleaner Fossil Fuels And Alternative Sources Of Energy, Reena Rahi

Dissertations, Theses, and Capstone Projects

We developed a series of catalysts, composed of metal nanoparticles immobilized on basic supports for the hydrogenation of heteroaromatics of relevance to cleaner fossil fuels and biodiesel, and for the dehydrogenation of heteroaromatics of relevance to hydrogen storage in organic liquids. Our catalyst design involves nanostructured catalysts composed of metal particles immobilized on basic supports capable of ionic mechanism that may avoid catalyst poisoning and enhance catalytic activity.

We prepared a new catalyst composed of Pd nanoparticles immobilized on MgO by NaBH4 reduction of Na2PdCl4 in methanol in the presence of the support. TEM measurements revealed well-dispersed 1.7 nm Pd …


Organic Pi-Stacking Semiconducting Material: Design, Synthesis And The Analysis Of Structure And Properties, Bin Wang Feb 2014

Organic Pi-Stacking Semiconducting Material: Design, Synthesis And The Analysis Of Structure And Properties, Bin Wang

Dissertations, Theses, and Capstone Projects

Organic semiconducting materials have been under intensive investigation in the recent decades for potential applications in various electronic or optoelectronic devices such as light emitting diodes, photovoltaic cells and field effect transistors. Compared to inorganic counterparts, organic charge transport materials are attractive for their abilities of forming thin-films, large area manufacturing, compatibility with flexible substrate, light weight and potential low fabrication cost. The charge transport property of the organic active layer is one of the key factors to the electronic or optoelectronic performance of devices. Research projects presented in this thesis focused on improving charge carrier mobility of organic charge …