Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2019

Sodium-ion battery

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Recent Progress In Vanadium-Based Electrode Materials, Meng-Lei Sun, Da-Qi Zhang, Jin-Kui Feng, Jiang-Feng Ni Feb 2019

Recent Progress In Vanadium-Based Electrode Materials, Meng-Lei Sun, Da-Qi Zhang, Jin-Kui Feng, Jiang-Feng Ni

Journal of Electrochemistry

It is an important solution to solve energy storage problems by developing inexpensive and safe lithium-ion and sodium-ion batteries with superior performance. Vanadium-based electrode materials are promising electrode materials because of diversified chemical valences, open structures and high theoretical capacities. In the past few years, vanadium-based electrode materials such as oxides, sulfides, and phosphates have achieved a considerable development in the battery field, It is, therefore, necessary to summarize their recent research progress. In this review, we particularly highlight the key challenges that are facing in the application of vanadium materials, such as low ion diffusion coefficient and poor structural …


Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai Feb 2019

Recent Progress On Tio2-Based Anode Materials For Sodium-Ion Batteries, Si-Tian Lian, Jian-Shuai Lv, Qiang Yu, Guang-Wu Hu, Zhuo Chen, Liang Zhou, Li-Qiang Mai

Journal of Electrochemistry

Titanium dioxide (TiO2) represents a stable, low-cost, and nontoxic anode material for sodium-ion batteries (SIBs). However, the low electrical conductivity limits its electrochemical activity (specific capacity) and rate capability, hindering its widespread applications. In this article, we show that different crystal forms of TiO2 have different pore structures, resulting in the distinct sodium storage capacities. Accordingly, the article introduces how TiO2 microstructures influence sodium storage. The nanoparticle structure can improve the rate performance of the material due to its short ion diffusion distance, and the internal cavity of the hollow structure is beneficial to cycle stability. …


Cvd Preparation And Application Of 3d Graphene In Electrochemical Energy Storage, Yong-Kang Xia, Ming-Yuan Gu, Hong-Guan Yang, Xin-Zhi Yu, Bing-An Lu Feb 2019

Cvd Preparation And Application Of 3d Graphene In Electrochemical Energy Storage, Yong-Kang Xia, Ming-Yuan Gu, Hong-Guan Yang, Xin-Zhi Yu, Bing-An Lu

Journal of Electrochemistry

Three-dimensional (3D) graphene combinations with the excellent intrinsic properties of graphene and the 3D micro/nano porous structures provide a graphene foam with high specific surface area, excellent mechanical strength and fast electron and mass transports. The 3D graphene foam and its composite nanomaterials are widely used in the fields of nano-electronics, energy storage, chemical and biological sensing. The 3D graphene foam prepared by chemical vapor deposition (CVD) method is of high purity and crystallinity. In this review, a brief overview in the CVD preparations of 3D graphene and properties of CVD prepared 3D graphene based nanomaterials in electrochemical energy storage …