Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering Science and Materials

Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan Dec 2021

Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan

Open Access Theses & Dissertations

The discovery of efficient and sustainable carbon-based nanotechnologies to solve both the scarcity of drinking water and global energy crisis has become a paramount task in the last decades. Owed to the fast population growth and industrialization of the modern society, access to potable water and clean energy technologies is becoming very hard around the globe. Water pollutants have become a serious threat to the environment and ecology because of their toxic nature. Parallelly, the current hydrocarbon-based fuel industries are generating high levels of contamination across the planet, making imperative the development of cleaner energy technologies. In this regard, the …


Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson May 2020

Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson

Arts & Sciences Electronic Theses and Dissertations

The large absorption cross sections and the tunability of the energetic spacings between the states in the conduction (CB) and valence band (VB) within a semiconductor nanoparticle (NP) make them promising media for capturing electromagnetic radiation and converting it into charge carriers, or electricity. In photovoltaic devices that incorporate semiconductor NPs, it would be ideal if every photon could be absorbed by a NP and the carriers could be collected with perfect efficiency and without loss of energy. The relaxation pathways of the carriers within the NPs down to the band edge and their fate at the band edge contribute …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang Dec 2018

Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang

McKelvey School of Engineering Theses & Dissertations

Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper)-based products can be inexpensively produced and recycled. Among cellulosic materials, bacterial nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface chemistry, and cost-efficient, scalable and environment-friendly synthesis. BNC can be biosynthesized by Gluconacetobacter xylinus, which is the most characterized BNC producer among various microorganisms. BNC is composed of highly pure cellulose nanofibrils, produced from well-defined dextrose through biochemical steps and subsequent self-assembling of the secreted cellulose fibrils which has the dimension ranges from 25 to …


Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang Dec 2018

Multifunctional Nanocomposites Based On Bacterial Cellulose, Qisheng Jiang

McKelvey School of Engineering Theses & Dissertations

Cellulose is biodegradable, renewable, and abundant in nature thus cellulose (or paper)-based products can be inexpensively produced and recycled. Among cellulosic materials, bacterial nanocellulose (BNC) draws a special research attention due to the inherent three-dimensional nanofibrous structure, excellent mechanical flexibility, high purity and well-defined surface chemistry, and cost-efficient, scalable and environment-friendly synthesis. BNC can be biosynthesized by Gluconacetobacter xylinus, which is the most characterized BNC producer among various microorganisms. BNC is composed of highly pure cellulose nanofibrils, produced from well-defined dextrose through biochemical steps and subsequent self-assembling of the secreted cellulose fibrils which has the dimension ranges from 25 to …


Synthesis Of Crumpled Graphene And Titanium Dioxide Based–Nanomaterials And The Application To Carbon Dioxide Photoreduction, Yao Nie Aug 2018

Synthesis Of Crumpled Graphene And Titanium Dioxide Based–Nanomaterials And The Application To Carbon Dioxide Photoreduction, Yao Nie

McKelvey School of Engineering Theses & Dissertations

With the rapid development of the economy, increasing combustion of fossils fuels has caused an increase in the atmospheric carbon dioxide (CO2) level, and has led to global climate change. As a mitigation approach, CO2 capture and conversion (CCC) can not only capture CO2, but also convert it to useable products, such as hydrocarbon fuels. Photocatalytic reduction is an attractive CCC option that directly harnesses inexpensive and abundant solar energy. Titanium dioxide (TiO2) is a widely used semiconductor for photocatalysis, and graphene nanosheets are a promising material for use in fabricating graphene-TiO2 hybridized photocatalysts. To realize the application of these …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood Jan 2014

An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood

Graduate College Dissertations and Theses

The enhancement of strength of nanoscale materials such as face-centered cubic metal nanowires is well known and arises largely from processes mediated by high energy surface atoms. This leads to strong size effects in nanoscale plasticity; ,smaller is stronger. Yet, other factors, such as crystalline defects also contribute greatly to the mechanical properties. In particular, twin boundaries, which are pervasive and energetically favorable defects in face-centered cubic metal nanowires, have been shown to greatly enhance the strength, furthermore this increase in strength has been shown to be directly influenced by the twin density. However, attempts to control the …


Modeling The Exfoliation Rate Of Graphene Nanoplatelet Production And Application For Hydrogen Storage, Cory Knick Jan 2012

Modeling The Exfoliation Rate Of Graphene Nanoplatelet Production And Application For Hydrogen Storage, Cory Knick

Browse all Theses and Dissertations

Graphene is a unique and revolutionary new nanomaterial. A method for it's production had a U.S. patent application in 2002 (patent issued in 2006), it was produced via mechanical exfolia-tion in 2004, and subsequently the Nobel Prize in Physics was awarded in 2010 for it. These events have sparked a surge of graphene-related research. In order for graphene to be widely studied and incorporated into emerging technologies, a versatile method for large scale produc-tion of high-quality graphene is required. Current methods are either slow or expensive which limits the scale-up of graphene production. Very recently, the liquid phase exfoliation of …


A Comprehensive Multiphysics, Multiscale Modeling Framework For Carbon Nanotube Fabrication Process By Chemical Vapor Deposition, Mahmoud Reza Hosseini Aug 2008

A Comprehensive Multiphysics, Multiscale Modeling Framework For Carbon Nanotube Fabrication Process By Chemical Vapor Deposition, Mahmoud Reza Hosseini

All Dissertations

Carbon nanotubes (CNTs) are among the most promising nanosize materials as evidenced by the attention they have received since their discovery in 1991 and a wide range of scientific and industrial applications. Each of these applications requires unique CNTs with specific length, diameter and chirality. However, control of these parameters is considered as one of the main challenges for large scale production of CNTs. Furthermore, these processes are not well designed so as to limit the number of CNT defect sites or the production of unwanted byproducts such as amorphous carbon. Therefore, it is crucial to develop a controlled CNTs …