Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

2023

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 60

Full-Text Articles in Engineering Science and Materials

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan Dec 2023

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan

Civil Engineering ETDs

Asphalt Concrete (AC) is a cross-anisotropic viscoelastic material. This study has developed a methodology to backcalculate the cross-anisotropic properties of the AC layer from the Falling Weight Deflectometer (FWD) sensor and pavement response data from embedded sensors inside a pavement section. This study has also developed a two-way coupled Multiscale Finite Element Model (MsFEM) with Phase Field Fracture (PFF) to study the microstructural heterogeneity and damage of the AC layer based on the actual field loadings. A Finite Difference Time Domain (FDTD) and Machine learning-based backcalculation algorithm were developed to determine the layer thickness and dielectric constant from air-coupled Ground …


Effect Of Multiple Machine Configurations And Wall Thickness On Microstructure And Microhardness Of Laser Powder Bed Fusion (L-Pbf) Additively Manufactured Heat-Treated Inconel 718 Products, Anannya Doris Dec 2023

Effect Of Multiple Machine Configurations And Wall Thickness On Microstructure And Microhardness Of Laser Powder Bed Fusion (L-Pbf) Additively Manufactured Heat-Treated Inconel 718 Products, Anannya Doris

Open Access Theses & Dissertations

This research examined thin section prototypes having seven nominal thicknesses ranging from 0.1 to 2.0 mm, composing a series of geometric feature build plates manufactured by multiple laser powder bed fusion (L-PBF) machine configurations. The build plates and thin section feature prototypes underwent a full heat treatment cycle per established standards: anneal at 1066°C, SR+HIP at 1163°C, and fully treat-treated by combining SR+HIP+solution treatment at 1066°C and double aging treatment at 760°C and 680°C, respectively. The fully heat-treated (FHT) Inconel 718 wall specimens were sectioned from 16 distinct geometric feature build plates constructed on 15 different L-PBF machines. The thin …


Ultrasonic Non-Destructive Evaluation Of Additively Manufactured Polymer-Ceramic Composites, Christian Alexander Ruiz Dec 2023

Ultrasonic Non-Destructive Evaluation Of Additively Manufactured Polymer-Ceramic Composites, Christian Alexander Ruiz

Open Access Theses & Dissertations

Digital light processing (DLP) is an attractive additive manufacturing technique due to its ability to create ceramic parts with complex geometries. DLP uses ultraviolet light to polymerize a slurry comprised of ceramic powder and photosensitive resin in layers to create solid parts. Printing parameters such as light intensity and exposure time are critical when producing these parts. Improper parameters can lead to over or under-curing, adversely impacting print quality and strength. Samples were printed at varying layer exposure times and then tested using ultrasonics to determine the degree of conversion. Additionally, ultrasonics were used as a non-destructive technique to obtain …


Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark Dec 2023

Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark

Open Access Theses & Dissertations

Cardiovascular disease (CVD) is the leading cause of death in the US, with approximately 859,000 deaths each year. The major contributor to CVD is Acute Myocardial Infarction (AMI), which causes the death of approximately 25% of the cardiomyocytes present in the left ventricle of the heart. After AMI, the adult human heart has a very limited regenerative capacity. Moreover, the electrical propagation of the myocardium is severely disrupted, making the heart more susceptible to failure and patient death. However, current pharmacological treatments do not address the loss of cardiomyocytes and the disruption of electrical propagation in the heart. Tissue engineering …


Initiation Criteria For The Onset Of Geomagnetic Substorms Based On Auroral Observations And Electrojet Current Signatures, Mayowa Michael Kayode-Adeoye Dec 2023

Initiation Criteria For The Onset Of Geomagnetic Substorms Based On Auroral Observations And Electrojet Current Signatures, Mayowa Michael Kayode-Adeoye

<strong> Theses and Dissertations </strong>

In recent years, several substorm onset criteria have been developed, either from auroral observations (many authors) or from auroral electrojet properties such as those described by (Forsyth et al., 2015; Maimaiti et al., 2019; Newell & Gjerloev, 2011; Partamies et al., 2011) The different criteria are being investigated using a low order physics model of the magnetosphere called WINDMI (Spencer et al., 2009) and inferences are being made in line with the WINDMI model. The model variables will be compared with the criteria for substorm onset proposed by examining the SML index.

The WINDMI model uses solar wind and IMF …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Upcyclying Of Polyethylene Terephtalate By Addition Of Thermoplastic Elastomer, Diego Francisco Bermudez Dec 2023

Upcyclying Of Polyethylene Terephtalate By Addition Of Thermoplastic Elastomer, Diego Francisco Bermudez

Open Access Theses & Dissertations

Continual overconsumption of single-use plastics has generated challenges of solid waste management across the United States. Common plastic waste management solutions, such as landfill, have caused the migration of contaminants into the environment consequently affecting not only the health of wildlife, but also that of human beings. Alternative strategies for the handling of single-use plastic such as polyethylene terephthalate (PET), used in the food packaging industry, can ultimately help mitigate the noxious consequences of single-use plastics affecting entire ecosystems. This study demonstrates a potential avenue of materials upcycling by studying the effects of coupling PET with the thermoplastic elastomer styrene-ethylene-butylene-styrene …


Characterization Of Fcc Al-Cu-Ni-Mn-Ag High Entropy Alloy, Gina Zavala Alvarado Dec 2023

Characterization Of Fcc Al-Cu-Ni-Mn-Ag High Entropy Alloy, Gina Zavala Alvarado

Open Access Theses & Dissertations

The effect of Ag on the microstructure developed in Al-Cu-Ni-Mn alloy has been determined. The modified Al-Cu-Ni-Mn alloy by Ag addition shows the presence of three microconstituents consisting of phases rich in (1) Cu, (2) Ni, and (3) Ag. The foregoing alloys heated for 24 hours from 600 to 1000 °C show excellent oxidation resistance. Oxide formation and microstructural changes of the alloy have been characterized by elemental mapping and X-ray diffraction (XRD). Results show that the elements of Al and Mn preferentially oxidize while Cu and Ni provide oxidation resistance to the alloy. Hardness was taken on the alloy …


Switching Methods For Three-Dimensional Rotational Dynamics Using Modified Rodrigues Parameters, Matthew Jarrett Banks Oct 2023

Switching Methods For Three-Dimensional Rotational Dynamics Using Modified Rodrigues Parameters, Matthew Jarrett Banks

Mechanical & Aerospace Engineering Theses & Dissertations

A rigid body in space has three degrees of rotational freedom. As a result, a minimum of three independent parameters is required to define the three-dimensional orientation of a rigid body. As is well known, every set of three independent parameters has at least one orientation where mathematical or geometrical singularities are encountered; therefore, when the use of a three-parameter representation is desired, a method for singularity avoidance must also be considered. A common practice for singularity avoidance is to switch between parameter sets whose singularities occur at different orientations. With this in mind, modified Rodrigues parameters (MRP) are considered …


Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …


Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta Aug 2023

Investigating The Rheological Behavior Of A Simple Yield Stress Fluid Under Shear Flows, Francesco Accetta

Theses

Many soft materials display unique and complex rheological behavior characterized by a transition from a solid-like to a fluid-like state upon the application of a force that exceeds the threshold to flow, known as the yield stress. Yield stress fluids are found in a wide range of commonly encountered materials including microgels, emulsions, and foams, and have been widely studied by rheologists over the last several decades. Carbopol is a popular polymeric microgel system as it displays simple, non-thixotropic rheological behavior and is typically seen as an ideal yield stress fluid. Previous research has demonstrated the reproducible behavior of shear …


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng Aug 2023

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Design And Development Of Transition Metal-Based Electrocatalysts For Environmentally Friendly And Efficient Hydrogen Evolution Reactions (Her), Navid Attarzadeh Aug 2023

Design And Development Of Transition Metal-Based Electrocatalysts For Environmentally Friendly And Efficient Hydrogen Evolution Reactions (Her), Navid Attarzadeh

Open Access Theses & Dissertations

Hydrogen fuel is a clean energy source primarily because it emits no carbon dioxide (CO2). Sustainable energy alternatives have attracted the scientific community and policymakers as concerns over global warming and depletion of fossil fuels have increased significantly. Substituting H2 gas as a primary source for our daily energy consumption under the guideline of the hydrogen economy concept has not progressed as anticipated because of inadequate efficiency associated with the generation (electrolyzer) and utilization (fuel cell) devices. However, there are challenges associated with hydrogen that must be overcome for it to become a truly sustainable and widespread energy source. The …


Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho Aug 2023

Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho

Open Access Theses & Dissertations

Testing for mechanical properties for additive manufacturing has been based on already existing standards for traditional manufacturing methods. For composites in large scale additive manufacturing there is a research gap in bond strength and fracture toughness for a single layer interface. By using Double cantilever beam Mode I, this thesis manuscript validates testing parameters and protocols to describe the intricacies of ABS matrix 20 wt.% carbon filled composite, specifically on the layer-to-layer interface. Studies suggest that fracture toughness is sensitive to process parameters, like deflection speed and sharpened crack tip at the layer interface of BAAM 3D printed part and …


Studies On Atomic And Molecular Properties Using Locally Scaled And Perdew-Zunger Self-Interaction Corrected Density Functional Approximations, Philip Adeniyi Oyedele Aug 2023

Studies On Atomic And Molecular Properties Using Locally Scaled And Perdew-Zunger Self-Interaction Corrected Density Functional Approximations, Philip Adeniyi Oyedele

Open Access Theses & Dissertations

This thesis examines some properties of atoms and molecules using one-electron self-interaction-correction (SIC) methods such as the Perdew-Zunger SIC (PZSIC) and the locally scaled SIC method of Zope and coworkers within the Fermi-Lowdin SIC formal- ism. The accuracy of electron density is examined by comparing moments of the den- sity, ⟨r^n⟩ = ∫ ρ(r)rndτ = ∫ ∞ 0 4πr2ρ(r)rndr (n = −2, −1, 0, 1, 2, 3) with the corresponding available values from the Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) method. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and …


Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte Aug 2023

Electrochemical Approaches To Life-Support Resources In Space Missions And Nuclear Technologies: Hydrogen Peroxide And Uranium Films, Armando Manuel Pena-Duarte

Open Access Theses & Dissertations

Space race has developed several technological advances that have achieved and continue to achieve the success of space missions in the aerospace timeline. Currently, the number of space technical and scientific innovations is still growing––demanding new materials and developments for extreme performing applications of fuel cells, batteries, supercapacitors, and systems of nuclear energy. Space missions require life-support solutions, auto-sustainable closed-loop living environments, cleaning and sanitizing solutions against pathogens, and safe nuclear-based resources of energy––with fissile materials with well-controlled dimensions within the core fuel elements. Likewise, to guarantee safety conditions, reduce costs, and facilitate operational logistics, space missions must reduce their …


Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez Aug 2023

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez

Doctoral Dissertations

Pursuing advanced structural materials with enhanced performance, reduced weight, and lower costs is a constant endeavor in the aerospace and automotive industries. Conventional structural alloys, such as cast irons, carbon steels, and titanium alloys, have strength, weight, and cost limitations. Aluminum-based alloys, known for their lightweight and high strength, have gained popularity in these industries. This dissertation focuses on investigating microstructure and mechanical behavior of novel powder-extruded Al-Ce-Mg alloys as potential candidates for high-performance structural materials.

This research explores using powder extrusion, a well-established forging methodology in the steel industry, to produce Al-Ce-Mg alloys with improved properties and aims to …


Theoretical And Experimental Study Of Active Magnetic Bearing Control Integrated On Bently's Rotor Kit, Arturo Mario Flores Aug 2023

Theoretical And Experimental Study Of Active Magnetic Bearing Control Integrated On Bently's Rotor Kit, Arturo Mario Flores

Master's Theses

This thesis focuses on the comprehensive study of controlling a customized Active Magnetic Bearing (AMB) installed on Bently Nevada’s RK4 rotor kit in Cal Poly’s Vibrations and Rotordynamics Lab. The AMB was uniquely designed and manufactured by a Cal Poly senior project team to fit Bently’s rotor kit and the results of this research are distinctive to the custom system. To achieve practical functionality of the AMB system, we designed a controller a Virtual Instrument (VI) using the National Instrument software, LabVIEW. From the experimental study, we calibrated the programming to find unknown parameters of the AMB system and validated …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …


Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji Aug 2023

Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji

Mechanical & Aerospace Engineering Theses & Dissertations

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This research focuses on fabrication, experimental testing, and progressive failure modelling to study the deformation of an ultra-thin composite beam. The research study examines deformation modes of a boom under repetitive pure bending loads using 4-point bending setup. The material and …


Development And Characterization Of Lead & Lead-Free Perovskite Solar Cell Materials, Rubaiya Murshed Aug 2023

Development And Characterization Of Lead & Lead-Free Perovskite Solar Cell Materials, Rubaiya Murshed

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, perovskite photovoltaic technology has offered enormous viability and dimensionality in solar cell research. As a light-harvesting active layer, Perovskite generated remarkable development in device efficiency of 25.7% for the single-junction solar cell, and over 33% for the perovskite/silicon tandem solar cell. Also, perovskite-perovskite tandem solar cell (also called all-perovskite tandem solar cell) shows great potential in device performance and achieved a power conversion efficiency (PCE) of 26.4%. Transitioning photovoltaic technology from the laboratory to commercial products, high PCE, low cost, long lifetime, and low toxicity are some of the critical factors to consider during material selection. Pb-halide …


The Center For Centering Dome, Olek Piechaczek, Ryan M. Scharf Jun 2023

The Center For Centering Dome, Olek Piechaczek, Ryan M. Scharf

Architectural Engineering

The Center for Centering seeks to create a large-scale healing center, conducive to individual centering of the mind and body. This mobile installation provides a relaxing, enclosed space while still maintaining a connection to the outdoors. The clients liked the idea of having a pop-up installation that could be easily set up as a touring display. With a deadline for installation looming in June 2022, a team of students had five months to design and manufacture the structure.

In winter 2022, the students developed custom geometry to minimize the number of individual parts and built a ¼ scale model of …


Pour-Over Coffee Stand With Warmer, Francesca Patawaran May 2023

Pour-Over Coffee Stand With Warmer, Francesca Patawaran

Honors Theses

This project sought to demonstrate the process of bringing a new product into the market, from the initial design and prototyping stage to marketing and, ultimately, mass production. As part of the curriculum of The Haley Barbour Center for Manufacturing Excellence (CME), the project team manufactured fifteen Pour-Over Coffee Stands with electric heating components. We first created a 3D model of the proposed design, ensuring that all components fit together in an assembly. Next, we worked with the lab technicians to create a prototype of the product. Then, we refined the manufacturing process to eliminate waste where possible. Throughout the …


Integrating Steel Slag Aggregates Into Asphalt Paving By Harmonizing Availability, Quality, Economics, And The Environment, Timothy R. Murphy May 2023

Integrating Steel Slag Aggregates Into Asphalt Paving By Harmonizing Availability, Quality, Economics, And The Environment, Timothy R. Murphy

Theses and Dissertations

This thesis provides guidance on how to balance matters related to the environmental stewardship, market sources, origin and uses, material properties, performance, and economic impact of using slag materials in pavements. The literature on this topic provides numerous references on the use of slag materials for specific applications, and this thesis aims to make use of those references along with other data from the author to describe slag materials from a holistic perspective and provide some suggestions for balancing several factors that impact optimal use of this resource within pavement structures. Discussion is given to the increased importance of recycling …


Soil Respiration Measurements Reveal High Retention Of Organic Carbon From Corn Residue Derived High-Lignin Fermentation Byproduct Enabling Sustainable Lignocellulosic Biofuel Production, Michelle Sun Wang May 2023

Soil Respiration Measurements Reveal High Retention Of Organic Carbon From Corn Residue Derived High-Lignin Fermentation Byproduct Enabling Sustainable Lignocellulosic Biofuel Production, Michelle Sun Wang

Dartmouth College Master’s Theses

While 2G biofuel production can utilize non-edible, lignocellulosic feedstocks such as agricultural residues to produce liquid fuel, harvesting crop residues is unsustainable without careful management of the soil underneath. By harvesting a fraction of the crop residues left in the field after harvest, soil health can diminish and critically, the soil organic carbon (SOC) stored in agricultural fields can decrease. Currently, in the most popular 2G process models published, the issue of soil degradation remains unresolved with residue harvest strategies receiving considerable attention in the literature and other SOC management strategies receiving far less. Specifically, the strategy of returning the …


The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee May 2023

The Influence Of Heat And Mass Transfer On The Setting Rate Of Adhesives Between Porous Substrates, Mubarak Mohammed Khlewee

Electronic Theses and Dissertations

The dynamic penetration of fluid into a porous media where other changes are occurring such as temperature or concentration is of interest to a number of situations. However, little experimental and theoretical analysis of this situation is found in the literature where most of the previously published works have studied the penetration with constant physical properties, where there is no change of the fluid as it enters the pores. This situation is important in the setting of adhesives in porous medium such as in the setting of hot melt and water-based adhesives in the production of paper based packaging. The …


Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour May 2023

Thermal Behavior Of Plain And Fiber-Reinforced Rigid Concrete Airfield Runways, Arash Karimi Pour

Open Access Theses & Dissertations

The environmental condition and temperature gradient are important factors resulting in concrete airfield runways cracking during the time. Rigid concrete airfield runways experience different thermal gradients during the day and night due to changes in air temperature. Curling and thermal expansion stresses are the main consequences resulting in various types of cracking over the surface and thickness of concrete airfield runways and increasing maintenance costs. The curvature of concrete slabs increases with an increase in the temperature gradient which is amplified when runways open to traffic. Additionally, the combination of the curling and shrinkage stresses, in rare circumstances, can be …


Characterization Of Novel Self-Healing Polymer Blends For Additive Manufacturing, Truman James Word May 2023

Characterization Of Novel Self-Healing Polymer Blends For Additive Manufacturing, Truman James Word

Open Access Theses & Dissertations

This dissertation begins with an overview of novel polymer systems which have been developed by the Polymer Extrusion Lab at the University of Texas at El Paso. Many composite polymer systems have been created using many different polymers as well as ceramics and metals primarily in the form of powders added to the bulk polymer. The bulk of this work entails a study that was conducted to develop and characterize the mechanical, shape memory and self-healing properties of three polymer blends: polylactic acid (PLA) combined with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA), acrylonitrile butadiene styrene (ABS) combined with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA), and polylactic …