Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Faculty Publications

Discipline
Institution
Keyword
Publication Year

Articles 1 - 15 of 15

Full-Text Articles in Engineering Science and Materials

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin Feb 2024

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin

Faculty Publications

Analyzing plastic flow in refractory alloys is relevant to many different commercial and technological applications. In this study, screw dislocation statics and dynamics were studied for various compositions of the body-centered cubic binary alloy tungsten–molybdenum (W–Mo). The core structure did not appear to change for different alloy compositions, consistent with the literature. The pure tungsten and pure molybdenum samples had the lowest plastic flow, while the highest dislocation velocities were observed for equiatomic, W0.5Mo0.5 alloys. In general, dislocation velocities were found to largely align with a well-established dislocation mobility phenomenological model supporting two discrete dislocation mobility regimes, …


Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Augmenting External Surface Pressures’ Predictions On Isolated Low-Rise Buildings Using Cfd Simulations, Md Faiaz Khaled, Aly Mousaad Aly Oct 2023

Augmenting External Surface Pressures’ Predictions On Isolated Low-Rise Buildings Using Cfd Simulations, Md Faiaz Khaled, Aly Mousaad Aly

Faculty Publications

The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an …


Developable Mechanisms On Regular Cylindrical Surfaces, Jacob R. Greenwood, Spencer P. Magleby, Larry L. Howell Mar 2023

Developable Mechanisms On Regular Cylindrical Surfaces, Jacob R. Greenwood, Spencer P. Magleby, Larry L. Howell

Faculty Publications

Developable mechanisms can provide high functionality and compact stowability. This paper presents engineering models to aid in the design of cylindrical developable mechanisms. These models take into account the added spatial restrictions imposed by the developable surface. Equations are provided for the kinematic analysis of cylindrical developable mechanisms. A new classification for developable mechanisms is also presented (intramobile, extramobile, and transmobile) and two graphical methods are provided for determining this clas sification for single-DOF planar cylindrical developable mechanisms. Characteristics specific to four-bar cylindrical developable mechanisms are also discussed.


Adiabatic Shear Banding In Nickel And Nickel-Based Superalloys: A Review, Russell A. Rowe, Paul G. Allison, Anthony N. Palazotto, Keivan Davami Nov 2022

Adiabatic Shear Banding In Nickel And Nickel-Based Superalloys: A Review, Russell A. Rowe, Paul G. Allison, Anthony N. Palazotto, Keivan Davami

Faculty Publications

This review paper discusses the formation and propagation of adiabatic shear bands in nickel-based superalloys. The formation of adiabatic shear bands (ASBs) is a unique dynamic phenomenon that typically precedes catastrophic, unpredicted failure in many metals under impact or ballistic loading. ASBs are thin regions that undergo substantial plastic shear strain and material softening due to the thermo-mechanical instability induced by the competitive work hardening and thermal softening processes. Dynamic recrystallization of the material’s microstructure in the shear region can occur and encourages shear localization and the formation of ASBs. Phase transformations are also often seen in ASBs of ferrous …


Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz Mar 2022

Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

Structural optimization is a methodology used to generate novel structures within a design space by finding a maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural optimization, is often used as a means for light-weighting a structure while maintaining mechanical performance. This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodologies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice designs were used: the Diamond, I-WP, and Primitive cells. These …


Investigation And Statistical Modeling Of The Mechanical Properties Of Additively Manufactured Lattices, Derek G. Spear, Anthony N. Palazotto Jul 2021

Investigation And Statistical Modeling Of The Mechanical Properties Of Additively Manufactured Lattices, Derek G. Spear, Anthony N. Palazotto

Faculty Publications

This paper describes the background, test methodology, and experimental results associated with the testing and analysis of quasi-static compression testing of additively manufactured open-cell lattice structures. The study aims to examine the effect of lattice topology, cell size, cell density, and surface thickness on the mechanical properties of lattice structures. Three lattice designs were chosen, the Diamond, I-WP, and Primitive Triply Periodic Minimal Surfaces (TPMSs). Uniaxial compression tests were conducted for every combination of the three lattice designs, three cell sizes, three cell densities, and three surface thicknesses. In order to perform an efficient experiment and gain the most information …


Homotopy Simulation Of Dissipative Micropolar Flow And Heat Transfer From A Two-Dimensional Body With Heat Sink Effect: Applications In Polymer Coating, O. A. Bég, B. Vasu, A. K. Ray, T. A. Beg, A. Kadir, H. J. Leonard, Rama S. R. Gorla Jan 2020

Homotopy Simulation Of Dissipative Micropolar Flow And Heat Transfer From A Two-Dimensional Body With Heat Sink Effect: Applications In Polymer Coating, O. A. Bég, B. Vasu, A. K. Ray, T. A. Beg, A. Kadir, H. J. Leonard, Rama S. R. Gorla

Faculty Publications

Non-Newtonian flow from a wedge constitutes a fundamental problem in chemical engineering systems and is relevant to processing of polymers, coating systems, etc. Motivated by such applications, the homotopy analysis method (HAM) was employed to obtain semi-analytical solutions for thermal convection boundary layer flow of incompressible micropolar fluid from a two-dimensional body (wedge). Viscous dissipation and heat sink effects were included. The non-dimensional boundary value problem emerges as a system of nonlinear coupled ordinary differential equations, by virtue of suitable coordinate transformations. The so-called Falkner-Skan flow cases are elaborated. Validation of the HAM solutions was achieved with earlier simpler models, …


Quantifying The Effects Of Hyperthermal Atomic Oxygen And Thermal Fatigue Environments On Carbon Nanotube Sheets For Space-Based Applications, Jacob W. Singleton, Gregory R. Cobb, Heath E. Misak, Ryan A. Kemnitz Oct 2019

Quantifying The Effects Of Hyperthermal Atomic Oxygen And Thermal Fatigue Environments On Carbon Nanotube Sheets For Space-Based Applications, Jacob W. Singleton, Gregory R. Cobb, Heath E. Misak, Ryan A. Kemnitz

Faculty Publications

The effects of atomic oxygen and thermal fatigue on two different types of carbon nanotube sheets were studied. One set was treated with nitric acid, while the other set was left untreated. Monotonic tensile tests were performed before and after exposure to determine the effects of either exposure type on the sheets’ mechanical properties. Electrical conductivity and electromagnetic interference measurements were recorded to determine the effects of AO-exposure and thermal cycling on the sheets’ electrical properties. Neither exposure type affected the sheets’ specific strengths. Both exposure types increased the sheets’ specific stiffnesses and decreased the sheets’ strains at failure. The …


Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction And Capillary Evaporation Enhancement, Xianming Dai, Fanghao Yang, Ronggui Yang, Xinyu Huang, William A. Rigdon, Xiaodong Li, Chen Li Nov 2014

Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction And Capillary Evaporation Enhancement, Xianming Dai, Fanghao Yang, Ronggui Yang, Xinyu Huang, William A. Rigdon, Xiaodong Li, Chen Li

Faculty Publications

Simultaneously achieving drag reduction and capillary evaporation enhancement is highly desired but challenging because of the trade-off between two distinct hydrophobic and hydrophilic wettabilities. Here, we report a strategy to synthesize nanoscale biphilic surfaces to endow exceptional drag reduction through creating a unique slip boundary condition and fast capillary wetting by inducing nanoscopic hydrophilic areas. The biphilic nanoporous surfaces are synthesized by decorating hydrophilic functional groups on hydrophobic pristine multiwalled carbon nanotubes. We demonstrate that the carbon nanotube-enabled biphilic nanoporous surfaces lead to a 63.1% reduction of the friction coefficient, a 61.7% wetting speed improvement, and up to 158.6% enhancement …


Use Of Comsol Simulation For Undergraduate Fluid Dynamics Course, Hyun J. Kwon Jan 2013

Use Of Comsol Simulation For Undergraduate Fluid Dynamics Course, Hyun J. Kwon

Faculty Publications

The COMSOL software was used to introduce CFD and teach fluid dynamics more effectively. Introduction of CFD has become an important part of fluid dynamics in recent years; however, undergraduate students have less access to practical exposure to it, unless they take additional elective courses which are seldom offered in undergrad predominant institutes. Simulation has become an essential step in designing and optimizing process in many engineering problems. Therefore, the COMSOL simulation project was assigned to undergraduate CFD as a part of their term project to enhance their exposure to simulation software and help understanding the use of simulation on …


Modeling The Effect Of Plasticizer On The Viscoelastic Response Of Crosslinked Polymers Using The Tube-Junction Model, P. P. Simon, Harry J. Ploehn Jan 2000

Modeling The Effect Of Plasticizer On The Viscoelastic Response Of Crosslinked Polymers Using The Tube-Junction Model, P. P. Simon, Harry J. Ploehn

Faculty Publications

Plasticizers modify the mechanical properties of polymericmaterials. The effects of plasticizers on glass transition temperatures can be most clearly observed in isochronal temperature sweep profiles of viscoelastic dynamic moduli. However, no simple mathematical models of plasticization are available to those who wish to design and employ plasticized materials in specific applications. We extend a phenomenological, molecular-level model (known as the tube–junction model) for crosslinked polymers to describe the effect of plasticizers on dynamic moduli. We show that the increase in free volume fraction due to the presence of the plasticizer can account for the shift in the glass transition in …


Measurement Of Thin Liquid Film Drainage Using A Novel High-Speed Impedance Analyzer, K. O. Hool, R. C. Saunders, Harry J. Ploehn Jan 1998

Measurement Of Thin Liquid Film Drainage Using A Novel High-Speed Impedance Analyzer, K. O. Hool, R. C. Saunders, Harry J. Ploehn

Faculty Publications

This work describes the design and implementation of a new instrument, called the thin film impedance analyzer, which measures the rate of drainage of thin oil films. The instrument forms an oil film by elevating a planar oil–water interface into a water drop hanging from a stainless steel capillary tube immersed in the oil. The instrument measures the magnitude of the impedance of the matter between the capillary tube and a screen electrode immersed in the lower water phase. Under appropriate conditions, the capacitance of the oil film dominates the impedance. The instrument records the increase in the magnitude of …


Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn Jan 1997

Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn

Faculty Publications

We present a new molecular-level picture of chain dynamics for describing the viscoelasticity of crosslinked polymers. The associated mathematical model consists of a time-dependent momentum balance on a representative polymer segment in the crosslinked network, plus phenomenological expressions for forces acting on the segments. These include a cohesive force that accounts for intermolecular attraction, an entropic force describing the thermodynamics governing chain conformations, and a frictional force that captures the temperature dependence of relative chain motion. We treat the case of oscillatory uniaxial deformation. Solution of the model equations in the frequency domain yields the dynamic moduli as functions of …