Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant Dec 2014

Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant

Doctoral Dissertations

Single carbon fibers are studied using a nano-tensile testing system. This system has unprecedented load and displacement resolution, nN and nm respectively, and the ability to perform dynamic testing for storage and loss modulus during quasi-static tensile extension. Furthermore, improved fiber mounting and alignment procedures coupled with the precision of the nano-tensile testing system assist in unprecedented resolution in single fiber mechanical testing for axial modulus and strength. Hence, using these unique capabilities, the moduli and their statistical distribution of many high performance carbon fibers are reported here. From this, a simplified single parameter model describing the strain dependent modulus …


Studies On The Wrinkling Of Thin Polymer Films Floating On Liquid, Kamil B. Toga Nov 2014

Studies On The Wrinkling Of Thin Polymer Films Floating On Liquid, Kamil B. Toga

Doctoral Dissertations

This dissertation aims to broaden our understanding on wrinkling instabilities occurring on floating polymeric sheets, and tries to establish innovative methods that exploit these patterns in studies on material behavior and interfacial phenomena. We will address three major topics in this thesis including, i) characterization of the conditions required to buckle an annular disc, ii) characterization of wrinkles occurring around a droplet/bubble placed on a membrane that is kept taut at the liquid-air interface, and iii) using wrinkling patterns as a probe to understand the interfacial behavior and dynamics of ultrathin films. The first project in this thesis is about …


Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor May 2014

Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor

Doctoral Dissertations

Membrane technology has become increasingly attractive in several applications including water filtration, food industry, oil and gas, and biomedical applications. Most recently the quest for renewable, bioenergy has called for use of membranes in biomass pretreatment and other stages of producing biofuel. The success and advancement of the membrane technology for these various applications has, however, been impeded by the fouling of membranes, which causes the pores in the microporous structure to block, resulting in reduced efficiency, and in some cases, total failure of the membranes system. This challenge leads to a tremendous increase in the cost of using membranes …


A Study Of Indentation Cracking In Brittle Materials Using Cohesive Zone Finite Elements, Kurt E. Johanns May 2014

A Study Of Indentation Cracking In Brittle Materials Using Cohesive Zone Finite Elements, Kurt E. Johanns

Doctoral Dissertations

Cohesive zone finite element simulations of pyramidal indentation cracking in brittle materials have been carried out in order to: (1) critically examine indentation cracking models that relate fracture toughness to indentation data; (2) determine the underlying physical mechanisms of indentation crack growth from a continuum view and their relationship to material properties; (3) explore the influence of indenter geometry on crack extension; and (4) provide a platform from which future simulations can add more complex material behavior as well as guidance for experimental measurements of fracture toughness. Standard fracture toughness geometries in addition to simplified indentation geometries were simulated in …


Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu Apr 2014

Self-Assembly Of Block Copolymers By Solvent Vapor Annealing, Mechanism And Lithographic Applications, Xiaodan Gu

Doctoral Dissertations

Block copolymers (BCP) are a unique class of polymers, which can self-assemble into ordered microdomains with sizes from 3 nm to about 50 nm making BCPs an appealing meso-scale material. In thin films, arrays of BCP microdomains with longrange lateral order can serve as ideal templates or scaffolds for patterning nano-scale functional materials and synthesizing nanostructured materials with size scales that exceed the reach of photolithography. Among many annealing methods, solvent vapor annealing (SVA) is a low-cost, highly efficient way to annihilate defects in BCP thin films and facilitates the formation of highly ordered microdomains within minutes. Directing the self-assembly …