Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Air Force Institute of Technology

Additive manufacturing

Mechanics of Materials

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Evaluation Of Additively Manufactured Lattices Under High Strain Rate Impact, Derek G. Spear Sep 2021

Evaluation Of Additively Manufactured Lattices Under High Strain Rate Impact, Derek G. Spear

Theses and Dissertations

Several additively manufactured lattice designs and configurations were evaluated under compression loads under various strain rates from quasi-static to highly dynamic. These experiments examined how the mechanical behavior of the lattice changed based on the lattice design properties and the applied strain rates. The modulus of elasticity, yield strength, plateau stress, and toughness were observed to decrease with an increase in strain rate, revealing that the lattice designs exhibit a negative strain rate sensitivity. A new lattice flow stress model was developed to account for the mechanical response of the lattice and was incorporated into a computational model for simulation. …


Investigation And Statistical Modeling Of The Mechanical Properties Of Additively Manufactured Lattices, Derek G. Spear, Anthony N. Palazotto Jul 2021

Investigation And Statistical Modeling Of The Mechanical Properties Of Additively Manufactured Lattices, Derek G. Spear, Anthony N. Palazotto

Faculty Publications

This paper describes the background, test methodology, and experimental results associated with the testing and analysis of quasi-static compression testing of additively manufactured open-cell lattice structures. The study aims to examine the effect of lattice topology, cell size, cell density, and surface thickness on the mechanical properties of lattice structures. Three lattice designs were chosen, the Diamond, I-WP, and Primitive Triply Periodic Minimal Surfaces (TPMSs). Uniaxial compression tests were conducted for every combination of the three lattice designs, three cell sizes, three cell densities, and three surface thicknesses. In order to perform an efficient experiment and gain the most information …