Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 59

Full-Text Articles in Engineering Science and Materials

Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang Dec 2018

Fe-N Doped Hollow Carbon Nanospheres Linked By Carbon Nanotubes For Oxygen Reduction Reaction, Ya-Lin Zhang, Chi Chen, Liang-Liang Zou, Zhi-Qing Zou, Hui Yang

Journal of Electrochemistry

The development of non-precious metal catalysts for oxygen reduction reaction (ORR) is essential for large-scale application of proton exchange membrane fuel cells. Herein, we present the in situ formed Fe-N doped hollow carbon nanospheres linked by carbon nanotubes composite, synthesized by using ZIF-8 as sacrificed template to form polydopamine (PDA) hollow nanospheres, followed by complexing with FeCl3, high temperature heat-treatment and NH3-etching. ZIF-8 was gradually decomposed simultaneously with PDA coating due to the loss of Zn2+ grabbed by PDA. NH3 etching resulted in the improved surface area, while the reducibility of NH3 resulted in …


Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu Dec 2018

Caging Porous Co-N-C Nanocomposites In 3d Graphene As Active And Aggregation-Resistant Electrocatalyst For Oxygen Reduction Reaction, Lu-Yang Xiu, Meng-Zhou Yu, Peng-Ju Yang, Zhi-Yu Wang, Jie-Shan Qiu

Journal of Electrochemistry

Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries. The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability. During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts. We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 …


Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao Dec 2018

Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao

Journal of Electrochemistry

Palladium (Pd) is a good catalyst for ethanol electro-oxidation in alkaline solutions. The activity of Pd is further improved in this study by modifying the gold (Au) nanoparticles with Pd adatoms using a simple spontaneous deposition process. The Pd overlayer on the Au core (Au@Pd) is un-uniform with some Au atoms exposed to the electrolyte. The activity of Au@Pd/C toward ethanol oxidation reaction (EOR) is much higher than that of Pd/C in an alkaline solution. The peak current density of Au@Pd/C is 4.6 times higher than that of Pd/C with a 100 mV lower onset potential. The enhanced activity may …


The Pilot Application Of Electrochemical Impedance Spectroscopy On Dynamic Proton Exchange Membrane Fuel Cell, Jian-Wei Guo, Jian-Long Wang Dec 2018

The Pilot Application Of Electrochemical Impedance Spectroscopy On Dynamic Proton Exchange Membrane Fuel Cell, Jian-Wei Guo, Jian-Long Wang

Journal of Electrochemistry

By analyzing Electrochemical Impedance Spectroscopy (EIS) in applications of dynamic proton exchange membrane fuel cell (PEMFC), bottlenecks which restrict EIS tool development have been pointed out in this paper. Though the high-frequency resistance in EIS is largely accepted as cell inner-resistance, this can only be applied for cell with low current. The low-frequency resistance is difficult to be realized due to its relation with mass transfer. Furthermore, the improved Randles equivalent circuits are built up preliminarily, thus, penetrating into studies for mass transfer reaction, cell operation/degeneration, and high temperature fuel cell. Inspiringly, EIS is becoming an analyzing tool for stack …


Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang Dec 2018

Facile Synthesis Of Pt-Cu Alloy Nanodendrites As High-Performance Electrocatalysts For Oxygen Reduction Reaction, Liu-Xuan Luo, Guang-Hua Wei, Shui-Yun Shen, Feng-Juan Zhu, Chang-Chun Ke, Xiao-Hui Yan, Jun-Liang Zhang

Journal of Electrochemistry

Structures and compositions have significant effects on the catalytic properties of nanomaterials. Herein, a facile etching-based method was employed to synthesize Pt-Cu nanodendrites (NDs) with uniform and homogeneous alloy structures for enhancing oxygen reduction reaction (ORR). The formation of dendritic morphology was ascribed to the etching effect caused by the oxidative etchants of the Br-/O2 pair. The atomic ratio of Pt/Cu in Pt-Cu NDs could be easily tuned by altering the ratio of the Pt/Cu precursors, without deteriorating the dendritic morphology. The most active carbon-supported Pt1Cu1 NDs (Pt1Cu1 NDs/C) exhibited the …


Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao Dec 2018

Tunable Electronic And Optical Properties Of Low-Dimensional Materials, Shiyuan Gao

Arts & Sciences Electronic Theses and Dissertations

Two-dimensional (2D) materials with single or a few atomic layers, such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs), and the heterostructures or one-dimensional (1D) nanostructures they form, have attracted much attention recently as unique platforms for studying many condensed-matter phenomena and holds great potentials for nanoelectronics and optoelectronic applications. Apart from their unique intrinsic properties which has been intensively studied for over a decade by now, they also allow external control of many degrees of freedom, such as electrical gating, doping and layer stacking. In this thesis, I present a theoretical study of the electronic and …


Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar Nov 2018

Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar

Bilge Nazli Altay

In recent years, traditional printing methods have been integrated to print flexible electronic devices and circuits. Since process requirements for electronics diff er from those for graphic printing, the fundamentals require rediscovery mainly to optimize manufacturing techniques and to find cost reduction methods without compromising functional performance. In addition, alternative inks need to be formulated to increase the variety of functional inks and to pioneer new product developments. In this report, we investigate a thermoplastic-based nickel ink prototype to print electrodes using a screen-printing process. Process fundamentals are explored, and cost reduction methods are addressed by studying …


Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli Nov 2018

Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli

Master's Theses

Titanium-Aluminum alloys are one of the widely used alloys in multiple engineering applications. They are highly preferred in Selective Laser Melting (SLM) processes due to their low density, high melting temperature, and good strength. Segregation occurs during the solidification of most alloys and produces a non-uniform distribution of atoms. In SLM, segregation may depict the type of adhesion between the two deposited interfacial layers and the strength between the interphase between an already solidified layer and a new one, and overall, the quality of the printed part. In order to avoid segregation, the understanding of the segregation behavior at atomistic …


System And Methods For Ventilation Through A Body Cavity, Mark A. Borden, Benjamin S. Terry Nov 2018

System And Methods For Ventilation Through A Body Cavity, Mark A. Borden, Benjamin S. Terry

Department of Mechanical and Materials Engineering: Faculty Publications

A system and methods for the delivery of oxygen through a body cavity of a subject using oxygen microbubbles . Through circulation of oxygen microbubbles through the body cavity , oxygen and carbon dioxide exchange may occur . Overall improvement in extending survival rate time during emergency situations caused by pulmonary or similar oxygen - intake restricting injury and / or failure may be achieved through use of the invented system and methods .


Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang Oct 2018

Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang

Journal of Electrochemistry

Hydrogen is a kind of renewable energies with the merits of environmentally friendly, abundance and high weight energy density, which can replace the fossil energy. The electrolysis of water is regarded as the most effective way to generate hydrogen. Owing to the sluggish kinetics and large overpotential of the anode oxygen evolution reaction (OER), the efficiency of the cathode hydrogen evolution reaction is greatly limited. Therefore, it is highly desirable to explore efficient, stable and low cost electrocatalysts to reduce the overpotential of OER and improve the efficiency of hydrogen evolution. Based on the natural characteristics of non-noble metal catalysts …


Hemodynamics And Pathology Of An Enlarging Abdominal Aortic Aneurysm Model In Rabbits, Hongmei Chen, Yonghua Bi, Siyeong Yu, Linxia Gu, Xiaoyan Zhu, Xinwei Han Oct 2018

Hemodynamics And Pathology Of An Enlarging Abdominal Aortic Aneurysm Model In Rabbits, Hongmei Chen, Yonghua Bi, Siyeong Yu, Linxia Gu, Xiaoyan Zhu, Xinwei Han

Department of Mechanical and Materials Engineering: Faculty Publications

Hemodynamics may play an essential role in the initiation and progression of abdominal aortic aneurysm (AAA). We aimed to study the mechanism of self-healing process by the changes of hemodynamics and pathology in an enlarging AAA in rabbits. Seventy-two rabbits were randomly divided into three groups. Rabbits underwent extrinsic coarctation and received a 10-minute elastase incubation in Group A and Group B. Absorbable suture used in Group A was terminated by balloon dilation at week 4. Diameter was measured after 1, 3, 5, and 15 weeks, computational fluid dynamics analysis was performed at week 3 and week 15. Rabbits were …


Techniques To Stimulate And Interrogate Cell–Cell Adhesion Mechanics, Ruiguo Yang, Joshua A. Broussard, Kathleen J. Green, Horacio D. Espinosa Oct 2018

Techniques To Stimulate And Interrogate Cell–Cell Adhesion Mechanics, Ruiguo Yang, Joshua A. Broussard, Kathleen J. Green, Horacio D. Espinosa

Department of Mechanical and Materials Engineering: Faculty Publications

Cell–cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell–extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell–cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell–cell adhesive junctions. …


Strong And Tough Continuous Nanofibers, Yuris Dzenis Sep 2018

Strong And Tough Continuous Nanofibers, Yuris Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

Amethod of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The one …


Complex Coordination Silver Electrocrystallization Mechanism On Glassy Carbon Electrode Surface, Shuai-Shuai Huang, Cheng Liu, Lei Jin, Fang-Zu Yang, Zhong-Qun Tian, Shao-Min. Zhou Aug 2018

Complex Coordination Silver Electrocrystallization Mechanism On Glassy Carbon Electrode Surface, Shuai-Shuai Huang, Cheng Liu, Lei Jin, Fang-Zu Yang, Zhong-Qun Tian, Shao-Min. Zhou

Journal of Electrochemistry

Cyclic voltammetry and potential step methods were successfully used to study the electrochemical crystallization mechanism of silver deposition on glassy carbon electrode (GCE) in the practical cyanide-free silver plating electrolyte containing composite complexing agents. Scharifker-Hill (SH) theory was used to fitting the experimental data. The results showed that the electrodeposition of silver is a diffusion controlled irreversible electrode process according to three-dimensional instantaneous nucleation mechanism. When the step potential shifted from -750 mV to -825 mV, the peak deposition current Im was increased, while the induced nucleation time tm shortened. The calculated kinetic parameters showed that the diffusion coefficient (D) …


Preparations Of Nano-Manganite Loaded Titanium Electocatalytic Membrane Electrode For Phenolic Wastewater Treatment, Le Li, Hong Wang, Rong-Hua Ma, Hong-Sen Hui, Xiao-Ping Liang, Jian-Xin Li Aug 2018

Preparations Of Nano-Manganite Loaded Titanium Electocatalytic Membrane Electrode For Phenolic Wastewater Treatment, Le Li, Hong Wang, Rong-Hua Ma, Hong-Sen Hui, Xiao-Ping Liang, Jian-Xin Li

Journal of Electrochemistry

Nano-manganese oxide loaded on titanium electrocatalytic membrane electrodes (nano-MnOx/Ti) were synthesized bysol-gel method using porous Ti membrane as a substrate and the manganese acetate as a raw material without releasing NOx. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Field-emission scanning electron microscopy (FESEM) were employed to characterize crystal form, valence state and surface morphology of nano-MnOx, respectively. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to investigate the electrochemical properties of nano-MnOx electrode. The results indicated that the MnOx catalysts consisted of γ-MnO2 and Mn2 …


Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang Aug 2018

Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang

Journal of Electrochemistry

Hydrogen energy, a kind of clean and renewable energy, is considered to be the solution to the problems of energy crisis and environmental deterioration. Electrochemical water splitting is an efficient and promising technology for the production of high-purity hydrogen. However, oxygen evolution reaction (OER) at the anode of water electrolyzer limits the efficiency of water splitting due to the high overpotential. Therefore, the challenges still remain for the exploration of highly active, stable and low-cost catalysts with superior activity for OER. Herein, nickel borate nanorods with high crystallinity were prepared via high-temperature calcination. The as-obtained nickel borate nanorods with 2 …


Near-Field Heat Transfer Enabled Nanothermomechanical Memory And Logic Devices, Sidy Ndao, Mahmoud Elzouka Jul 2018

Near-Field Heat Transfer Enabled Nanothermomechanical Memory And Logic Devices, Sidy Ndao, Mahmoud Elzouka

Department of Mechanical and Materials Engineering: Faculty Publications

A thermomechanical memory / logic device is disclosed . In embodiments , the thermomechanical device includes a first thermally controlled terminal ( e . g . , hot terminal ) ; a second thermally controlled terminal ( e . g . , cool terminal / base ) ; a stem or other structure that can be thermally expanded connected to the cool terminal ; and a thermal conductive head coupled to the stem . The head can exchange heat with the hot terminal . The stem and head are between the first thermally controlled terminal and the second thermally controlled …


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti Jul 2018

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from the …


Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini Jul 2018

Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini

Department of Mechanical and Materials Engineering: Faculty Publications

Chronic wounds are a major health concern and they affect the lives of more than 25 million people in the United States. They are susceptible to infection and are the leading cause of nontraumatic limb amputations worldwide. The wound environment is dynamic, but their healing rate can be enhanced by administration of therapies at the right time. This approach requires real-time monitoring of the wound environment with on-demand drug delivery in a closed-loop manner. In this paper, a smart and automated flexible wound dressing with temperature and pH sensors integrated onto flexible bandages that monitor wound status in real-time to …


Prevascularization Of 3d Printed Bone Scaffolds By Bioactive Hydrogels And Cell Co-Culture, Mitchell Kuss, Shaohua Wu, Ying Wang, Jason B. Untrauer, Wenlong Li, Jung Yul Lim, Bin Duan Jul 2018

Prevascularization Of 3d Printed Bone Scaffolds By Bioactive Hydrogels And Cell Co-Culture, Mitchell Kuss, Shaohua Wu, Ying Wang, Jason B. Untrauer, Wenlong Li, Jung Yul Lim, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated …


Pt/G-C3N4 Nanosheet For Visible Light €“Induced Enhancement Of The Activity For Formic Acid Electro-Oxidation, Yong-Rong Sun, Chun-Yu Du, Guo-Kang Han, Ya-Jing Wang, Yun-Zhi Gao, Ge-Ping Yin Jun 2018

Pt/G-C3N4 Nanosheet For Visible Light €“Induced Enhancement Of The Activity For Formic Acid Electro-Oxidation, Yong-Rong Sun, Chun-Yu Du, Guo-Kang Han, Ya-Jing Wang, Yun-Zhi Gao, Ge-Ping Yin

Journal of Electrochemistry

By using graphitic carbon nitride nanosheet (g-C3N4 nanosheet) as a support,Pt/g-C3N4 nanosheet catalyst was fabricated by microwave assisted polylol process. The nanoparticles size,composition,structure and optical properties of Pt/g-C3N4 nanosheet were characterized by TEM,XRD,XPS and UV-Vis diffuse reflectance spectroscopy. Comparing with the catalytic activities toward formic acid electro-oxidation under dark and visible light illumination,the superior activity of Pt/g-C3N4 nanosheet catalyst was achieved under visible light illumination. This visible light-driven enhancement in the formic acid performance could be attributed to the plasmon-induced electron-hole separation on g-C3N4 with …


Lead Modified Nanoporous Platinum Electro-Catalysts For Formic Acid Oxidation, Yuanyuan Zhang, Qingfeng Yi, Gekunkun Zuo, Tao Zou, Xiaoping Liu, Xiulin Zhou Jun 2018

Lead Modified Nanoporous Platinum Electro-Catalysts For Formic Acid Oxidation, Yuanyuan Zhang, Qingfeng Yi, Gekunkun Zuo, Tao Zou, Xiaoping Liu, Xiulin Zhou

Journal of Electrochemistry

Platinum (Pt) catalysts modified by other suitable metals significantly enhance their electrochemical activities for formic acid oxidation. In this work, a titanium-supported nanoporous network platinum (nanoPt/Ti) electrode was prepared using a hydrothermal method. The as-prepared nanoPt/Ti electrode was modified with a certain amount of lead by using cyclic voltammetry for different scan cycle numbers (n), namely, n = 10, 15, 20 and 30, to synthesize the novel lead-modified nanoporous Pt (nanoPb(n)-Pt/Ti) electrodes. Electro-oxidation of formic acid on these electrodes was studied with cyclic voltammetry (CV), chronoamperometry and chronopotentiometry in sulfuric acid solution. CV curves showed that both nanoPt/Ti …


Carbon Composite Fe3O4 Nanoparticles Based Electrochemical Sensor For Hydrogen Peroxide Detection, Si-Yu Zhang, Hui-Juan Wang, Shu-Fang Li, Jian-Ying Qu Jun 2018

Carbon Composite Fe3O4 Nanoparticles Based Electrochemical Sensor For Hydrogen Peroxide Detection, Si-Yu Zhang, Hui-Juan Wang, Shu-Fang Li, Jian-Ying Qu

Journal of Electrochemistry

In this work, a novel hydrogen peroxide electrochemical sensor was constructed with ferroferric oxide (Fe3O4) magnetic nanoparticles, which demonstrated good electrocatalytic activity for hydrogen peroxide. There existed a good linear relationship between the concentration of hydrogen peroxide and the oxidation peak current in the range of 1.00 × 10-6 ~ 1.00 × 10-3 mol·L-1 (R = 0.9980) with the detection limit of 6.60 × 10-7 mol·L-1. The sensor exhibited good anti-interference ability, high reproducibility and stability.


Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu Jun 2018

Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Objective: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes.

Methods: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared.

Results: The lumen gain for both the flared stent and the …


System And Method For Controlling Operations Of Air - Conditioning System, Mouhacine Benosman, Petros Boufounos, Boris Kramer, Piyush Grover May 2018

System And Method For Controlling Operations Of Air - Conditioning System, Mouhacine Benosman, Petros Boufounos, Boris Kramer, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

A method controls an operation of an air - conditioning system generating airflow in a conditioned environment . The method updates a model of airflow dynamics connecting values of flow and temperature of air conditioned during the operation of the air - conditioning system . The model is updated interactively iteratively to reduce an error between values of the airflow determined according to the model and values of the airflow measured during the operation . Next , the method models the airflow using the updated model and controls the operation of the air - conditioning system using the model .


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation …


Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma May 2018

Concomitant Crystallization In Propylene/Ethylene Random Copolymer With Strong Flow At Elevated Temperatures, Lirong Zheng, Lucia Fernandez-Ballester, Gerrit W. M. Peters, Zhe Ma

Department of Mechanical and Materials Engineering: Faculty Publications

Flow-induced crystallization of α- and γ-phases was studied for a propylene/ethylene random copolymer with 3.4 mol % ethylene at two high temperatures of 132 and 142 °C by combining a pressure-driven slit flow device with real-time synchrotron wide-angle X-ray diffraction. At 132 °C, it was found that both α- and γ-phases were generated at shear stresses ranging from 0.091 to 0.110 MPa and that the γ-phase always appeared later than the α-phase. However, for 142 °C and the same stresses, only the α-phase formed. Only upon cooling the partially crystallized copolymer did the γ-phase emerge. The lack of γ-crystals obtained …


Rare Earth - Free Permanent Magnetic Material, Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak Viziri Apr 2018

Rare Earth - Free Permanent Magnetic Material, Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak Viziri

Department of Mechanical and Materials Engineering: Faculty Publications

The invention provides rare earth - free permanent magnetic materials and methods of making them . The materials can be used to produce magnetic structures for use in a wide variety of commercial applications , such as motors , generators , and other electromechanical and electronic devices . Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply . The invention provides two different types of magnetic materials . The first type is based on an iron - nickel alloy that is doped with one or more doping elements …


Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis Apr 2018

Method Of Fabricating A Continuous Nanofiber, Yuris Dzenis

Department of Mechanical and Materials Engineering: Faculty Publications

A method of fabricating a continuous nanofiber is described . The method includes preparing a solution of one or more polymers and one or more solvents and electrospinning the solution by discharging the solution through one or more liquid jets into an electric field to yield one or more continuous nanofibers . The electrospinning process ( i ) highly orients one or more polymer chains in the one or more continuous nanofibers along a fiber axis of the one or more continuous nanofibers , and ( ii ) suppresses polymer crystallization in the one or more continuous nanofibers . The …


Method For Data - Driven Learning - Based Control Of Hvac Systems Using High - Dimensional Sensory Observations, Amir-Massoud Farahmand, Saleh Nabi, Piyush Grover, Daniel Nikolaev Nikovski Apr 2018

Method For Data - Driven Learning - Based Control Of Hvac Systems Using High - Dimensional Sensory Observations, Amir-Massoud Farahmand, Saleh Nabi, Piyush Grover, Daniel Nikolaev Nikovski

Department of Mechanical and Materials Engineering: Faculty Publications

A controller for controlling an operation of an air - conditioning system conditioning an indoor space includes a data input to receive state data of the space at multiple points in the space , a memory to store a code of a reinforcement learning algorithm and a history of the state data and a history of control commands having been applied to the air - conditioning system , wherein the history of the control commands is associated with the state data and history of rewards , a processor coupled to the memory determines a value function outputting a cumulative value …