Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Nanoscience and Nanotechnology

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 72

Full-Text Articles in Engineering Science and Materials

Syntheses Of Ag@Pd@Pt Nanoparticles With Tunable Shell Thickness For Electrochemical Oxidation Of Formic Acid, Xiao-Dong Lin, Du-Hong Chen, Zhong-Qun Tian Dec 2016

Syntheses Of Ag@Pd@Pt Nanoparticles With Tunable Shell Thickness For Electrochemical Oxidation Of Formic Acid, Xiao-Dong Lin, Du-Hong Chen, Zhong-Qun Tian

Journal of Electrochemistry

In an effort to lower cost of a catalyst, the silver (Ag) core with palladium (Pd) layer then platinum (Pt) island (Ag@Pd@Pt) nanoparticles were synthesized and the electrocatalytic activity of Ag@Pd@Pt nanoparticles on formic acid was compared with that of Au@Pd@Pt nanoparticles reported previously. The results showed that the existence of a small amount of Pt could significantly improve the activity of the catalyst. When the surface coverage of Pt approached 0.5 monolayers, the activity of Ag@Pd@Pt nanoparticles reached the maximum. Though the onset potential of the electro-oxidation was slightly more positive (about 50 mV), the overall electrocatalytic activity of …


Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan Dec 2016

Stm Investigation Of Oxygen Reduction Reaction On Solid Interface In Fuel Cell, Zhen-Feng Cai, Bing Sun, Wen-Jie Jiang, Ting Chen, Dong Wang, Li-Jun Wan

Journal of Electrochemistry

An electrocatalyst for oxygen reduction reaction (ORR) is an important component for fuel cells. An investigation at interfacial electrochemical reactions toward ORR at a molecular scale benefits mechanistic understanding as well as rational design of catalysts. Scanning tunneling microscopy (STM) has been proven to be a powerful tool to monitor chemical reactions and to provide in-situ information about the interfacial electrochemical reactions at a molecular level. This review summarizes the recent STM studies in monitoring the interface processes such as morphological changes, molecular changes, reaction intermediates, and oxidation products. The prospects of future development in this field are outlined.


Investigation On Laser Induced Deposition Of Cu-Based Materials At [Bmim]Bf4/Pt Electrode Interface, Min-Min Xu, Jin-Hua Mei, Jian-Lin Yao, Ren-Ao Gu Dec 2016

Investigation On Laser Induced Deposition Of Cu-Based Materials At [Bmim]Bf4/Pt Electrode Interface, Min-Min Xu, Jin-Hua Mei, Jian-Lin Yao, Ren-Ao Gu

Journal of Electrochemistry

By controlling the negative potential, Cu-based materials were deposited at the [BMIm]BF4/Pt electrode interface under the laser irradiation. The effects of laser power and irradiation time on the yield of deposition products were studied by using different laser powers and different irradiation time. The product yield could be directly determined by the size of deposition point through the observation from the optical microscope. Further mechanism study combined with the formula deduced that the thermal effect of the laser could make the electrode surface temperature rise 110 degrees, which can promote the occurrence of electrodeposition. By SEM characterization, the …


Lithium-Sulfur (Selenium) Batteries: Interface Issues And Solving Strategies, Nian-Wu Li, Ya-Xia Yin, Yu-Guo Guo Dec 2016

Lithium-Sulfur (Selenium) Batteries: Interface Issues And Solving Strategies, Nian-Wu Li, Ya-Xia Yin, Yu-Guo Guo

Journal of Electrochemistry

The stable interface is still a challenge for lithium-sulfur (selenium) batteries because of the low conductivity of sulfur (selenium), dissolution of polysulfide (polyselenide), volume expansion of sulfur (selenium), and lithium dendrite growth. This review describers some recent developments in lithium-sulfur (selenium) batteries and highlights our efforts in this field. The possible strategies for building stable interface in the lithium-sulfur (selenium) batteries including nano-restriction effect, chemical bonding, interface adsorption, surface coating, electrolyte optimization, and Lithium anode treatment have been discussed.


Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang Dec 2016

Synthesis Of Ultrathin Co3O4 Nanoflakes Film Material For Electrochemical Sensing, Hui-Juan Wang

Journal of Electrochemistry

Ultrathin cobalt oxide (Co3O4 ) nanoflakes film material was synthesized by using an electro-deposited cobalt layer as a raw material through a simple oxidation method and followed by a heat treatment at 350 oC. The physical characterizations of the Co3O4 nanoflakes film were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technologies, and the electrochemical activity was measured by cyclic voltammetry (CV). As a promising material for electrochemical sensing, the as-synthesized ultrathin Co3O4 nanoflakes film material exhibited excellent electrochemical activity for H2O …


The Effect Of A Powered Ankle Foot Orthosis On Walking In A Stroke Subject: A Case Study, Ali Pourghasem, Ismail Ebrahimi Takamjani, Mohammad Taghi Karimi, Mohammad Kamali, Mohammad Jannesari, Iman Salafian Dec 2016

The Effect Of A Powered Ankle Foot Orthosis On Walking In A Stroke Subject: A Case Study, Ali Pourghasem, Ismail Ebrahimi Takamjani, Mohammad Taghi Karimi, Mohammad Kamali, Mohammad Jannesari, Iman Salafian

Department of Mechanical and Materials Engineering: Faculty Publications

[Purpose] Standing and walking are impaired in stroke patients. Therefore, assisted devices are required to restore their walking abilities. The ankle foot orthosis with an external powered source is a new type of orthosis. The aim of this study was to evaluate the performance of a powered ankle foot orthosis compared with unpowered orthoses in a stroke patient.

[Subjects and Methods] A single stroke subject participated in this study. The subject was fitted with three types of ankle foot orthosis (powered, posterior leg spring, and carbon ankle foot orthoses). He was asked to walk with and without the three types …


Self-Patterning Gd Nano-Fibers In Mg-Gd Alloys, Yangxin Li, Jian Wang, Kaiguo Chen, Meiyue Shao, Yao Shen, Li Jin, Guo-Zhen Zhu Dec 2016

Self-Patterning Gd Nano-Fibers In Mg-Gd Alloys, Yangxin Li, Jian Wang, Kaiguo Chen, Meiyue Shao, Yao Shen, Li Jin, Guo-Zhen Zhu

Department of Mechanical and Materials Engineering: Faculty Publications

Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with a 〈c〉-rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. …


Single Site Robotc Device And Related Systems And Methods, Jack Mondry, Shane M. Farritor, Eric Markvicka, Thomas Frederick, Joseph Bartels Nov 2016

Single Site Robotc Device And Related Systems And Methods, Jack Mondry, Shane M. Farritor, Eric Markvicka, Thomas Frederick, Joseph Bartels

Department of Mechanical and Materials Engineering: Faculty Publications

The embodiments disclosed herein relate to various medical device components, including components that can be incor porated into robotic and/or in vivo medical devices. Certain embodiments include various medical devices for in vivo medical procedures.


Video Capture And Post-Processing Technique For Approximating 3d Projectile Trajectory, Chase M. Pfeifer, Judith M. Burnfield, Guilherme M. Cesar, Max H. Twedt, Jeff A. Hawks Nov 2016

Video Capture And Post-Processing Technique For Approximating 3d Projectile Trajectory, Chase M. Pfeifer, Judith M. Burnfield, Guilherme M. Cesar, Max H. Twedt, Jeff A. Hawks

Department of Mechanical and Materials Engineering: Faculty Publications

In this paper we introduce a low-cost procedure and methodology for markerless projectile tracking in three-dimensional (3D) space. Understanding the 3D trajectory of an object in flight can often be essential in examining variables relating to launch and landing conditions. Many systems exist to track the 3D motion of projectiles but are often constrained by space or the type of object the system can recognize (Qualisys, Göteborg, Sweden; Vicon, Oxford, United Kingdom; Opti-Track, Corvallis, Oregon USA; Motion Analysis, Santa Rosa, California USA; Flight Scope, Orlando, Florida USA). These technologies can also be quite expensive, often costing hundreds of thousand dollars. …


Micro/Nano-Structured Electrode Materials For Sodium-Ion Batteries, Shuang Yuan, Yun-Hai Zhu, Sai Wang, Tao Sun, Xin-Bo Zhang, Qiang Wang Oct 2016

Micro/Nano-Structured Electrode Materials For Sodium-Ion Batteries, Shuang Yuan, Yun-Hai Zhu, Sai Wang, Tao Sun, Xin-Bo Zhang, Qiang Wang

Journal of Electrochemistry

Sodium has similar physics and chemical properties to lithium, alternatively, sodium (Na)-ion batteries have again aroused a great deal of interest recently, particularly for large-scale stationary energy storage applications due to the practically infinite sodium resources and low cost. However, the technics and materials for Na-ion batteries are immature. Therefore, development of advanced anode and cathode materials for Na-ion batteries is urgently desired but remains a great challenge. This paper briefly reviews some recent progresses in this field, addressing the morphology effects, as well as functions of carbon composite materials toward Na-ion batteries. Several electrode materials with micro/nano-structures based on …


The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang Oct 2016

The Study Of Dynamical Electrochemical Impedance Spectroscopy For Oxygen Reduction Reaction On Pt/C Catalyst, Kun-Ming Shi, Jian-Wei Guo, Jia Wang

Journal of Electrochemistry

With joint techniques of rotating disc electrode(RDE) and electrochemical impedance spectroscopy(EIS), and further establishment on equivalent circuit model, this paper studied oxygen reduction reaction(ORR) on commercial Pt/C catalyst in acid medium. Our results found that the dynamical interface on Pt/C consists of two independent processes: 1) the PtO reduction from Pt surface, 2) the new PtO formation from ORR, thus providing key clues for catalyst stability and activity. This also implied that the dynamical interface facilitates reconstruction for porous electrode, and matches with mass transfer. One important issue is discovered that at high overpotential, the high reaction rate for ORR …


Template-Assisted Hydrothermal Synthesis Of Nio@Co3O4 Hollow Spheres With Hierarchical Porous Surfaces For Supercapacitor Applications, Wen Zhou, Xue-Feng Lu, Ming-Mei Wu, Gao-Ren Li Oct 2016

Template-Assisted Hydrothermal Synthesis Of Nio@Co3O4 Hollow Spheres With Hierarchical Porous Surfaces For Supercapacitor Applications, Wen Zhou, Xue-Feng Lu, Ming-Mei Wu, Gao-Ren Li

Journal of Electrochemistry

Hollow structures have shown great potentials in a variety of important applications, such as energy conversion and storage. In order to further enhance the performance, the rational design of hollow structures with higher complexity in terms of composition and structure is highly desirable and still remains a great challenge. In this work, an efficient strategy was established for the fabrication of novel NiO@Co3O4 hollow spheres (HSs) with hierarchical porous surfaces by silica spheres template-assisted hydrothermal synthesis. The as-fabricated NiO@Co3O4 HSs showed high specific surface area of 219.68 m2·g-1, and significant …


Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao Oct 2016

Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Analysis Of Corrosion-Induced Diffusion Layer In Zk60a Magnesium Alloy.Pdf, Shumin Li Oct 2016

Analysis Of Corrosion-Induced Diffusion Layer In Zk60a Magnesium Alloy.Pdf, Shumin Li

Shumin Li

Corrosion-induced damage in ZK60A magnesium alloy is analyzed via chemo-mechanical tests. A certain “diffusion” corrosion layer (DCL) is identified, where partial corrosion takes place. This layer is different from the corrosion product layer (CPL). Nanoindentation analysis shows that corrosion modifies mechanical properties in the DCL, which extends up to 8–9 micrometers into the bulk, away from the CPL. Measurements over the DCL indicate a lower elastic modulus and lower fracture toughness compared with the bulk, as well as higher variance (heterogeneity). Elemental analysis confirms the layer is composed of partially oxidized magnesium and diffused chloride ions. Gradual changes in mechanical …


Thermal Analysis Of Continuous And Patterned Multilayer Films In The Presence Of A Nanoscale Hot Spot, Jia-Yang Juang, Jinglin Zheng Oct 2016

Thermal Analysis Of Continuous And Patterned Multilayer Films In The Presence Of A Nanoscale Hot Spot, Jia-Yang Juang, Jinglin Zheng

Department of Mechanical and Materials Engineering: Faculty Publications

Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal …


Case Study Of Quantifying Energy Loss Through Ceiling-Attic Recessed Lighting Fixtures Through 3d Numerical Simulation, Ri Na, Shengmao Lin, Zhigang Shen, Linxia Gu Sep 2016

Case Study Of Quantifying Energy Loss Through Ceiling-Attic Recessed Lighting Fixtures Through 3d Numerical Simulation, Ri Na, Shengmao Lin, Zhigang Shen, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Abstract Air leakage through recessed lighting fixtures has been identified as a common issue that causes extra energy consumption in residential buildings. However, few quantitative studies in this area were found. As such, a preliminary assessment of the magnitude of this type of energy loss was conducted by using three-dimensional (3D) transient computational fluid dynamics (CFD) models. A hypothetical layout of recessed lighting fixtures was designed with boundary conditions of four different seasons, which were obtained from recorded roof/attic temperature data sets. The results of the study indicate that leakage of recessed lighting fixtures could be a significant channel of …


Compositionally Graded Bulk Heterojunction Devices And Methods Of Manufacturing The Same, Jinsong Huang, Zhengguo Xiao Sep 2016

Compositionally Graded Bulk Heterojunction Devices And Methods Of Manufacturing The Same, Jinsong Huang, Zhengguo Xiao

Department of Mechanical and Materials Engineering: Faculty Publications

Systems and methods are described to form compositionally graded BHJ structures utilizing solvent-fluxing techniques. In implementations, the systems and methods described herein involve a high boiling point additive, a solution of a polymer donor and an acceptor, a substrate material, a working solvent, and a flux solvent for formation of compositionally graded BHJ structures.


Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Sep 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Optical Patterning Of Trapped Charge In Nitrogen-Doped Diamond, Harishankar Jayakumar, Jacob Henshaw, Siddharth Dhomkar, Daniela Pagliero, Abdelghani Laraoui, Neil B. Manson, Remus Albu, Marcus W. Doherty, Carlos A. Meriles Aug 2016

Optical Patterning Of Trapped Charge In Nitrogen-Doped Diamond, Harishankar Jayakumar, Jacob Henshaw, Siddharth Dhomkar, Daniela Pagliero, Abdelghani Laraoui, Neil B. Manson, Remus Albu, Marcus W. Doherty, Carlos A. Meriles

Department of Mechanical and Materials Engineering: Faculty Publications

The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce …


Activation Effect Of Nano-Carbon Derived From Co2 On Lead Electrode In Sulfuric Aqueous Solution, Yu-Qiao Song, Hua Zhu, Guang-Jin Zhao, Wen-Long Wu, Shou-Bin Zhou, Di-Hua Wang Aug 2016

Activation Effect Of Nano-Carbon Derived From Co2 On Lead Electrode In Sulfuric Aqueous Solution, Yu-Qiao Song, Hua Zhu, Guang-Jin Zhao, Wen-Long Wu, Shou-Bin Zhou, Di-Hua Wang

Journal of Electrochemistry

Serious sulfation of the negative plate is one of the most popular reasons of the early failure of lead-acid battery. Addition of nano-carbon was proved to be effective for recovering the sulfated electrode and the property of the carbon material always plays an important role. In this work, a new kind of nano-carbon material with high electrical conductivity and good adsorption capability for heavy metal cations, which is electrochemically prepared from CO2 in molten carbonates, was tested as activation additive for the sulfated lead electrode by cyclic voltammetry and SEM measurements. The results showed that the as-prepared carbon can …


Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing Aug 2016

Preparations And Photoelectrochemical Properties Of Phosphate Modified Rgo-Biobr Nanocomposites, Shuang-Ying Chen, Zhi-Jun Li, Xu-Liang Zhang, Kang Hu, Rui Yan, Li-Qiang Jing

Journal of Electrochemistry

The RGO-BiOBr nanocomposites have been successfully synthesized by a hydrothermal process, and then modified with phosphorous acids. The photoelectrochemical properties of the fabricated RGO-BiOBr nanocomposite films were studied. The results indicate that the photocurrent densities of RGO-BiOBr were much larger compared with those of the bare BiOBr, and interestingly, the photocurrent densities were further improved after phosphate modification. Based on the analyses of the produced hydroxyl radical amounts, the enhanced photocurrent densities could be attributed to the introduction of RGO and to the formed negative fields of modified phosphate groups, which are favorable for electrons to be transferred and for …


WoX/Pedot:Pss Double-Layered Hole-Transport Layers For Efficient And Stable Planar Heterojunction Perovskite Solar Cells, Wen-Yuan Qiao, Qiang Guo, Cong Li, Shuang Ma, Fu-Zhi Wang, Song-Yuan Dai, Zhan-Ao Tan Aug 2016

WoX/Pedot:Pss Double-Layered Hole-Transport Layers For Efficient And Stable Planar Heterojunction Perovskite Solar Cells, Wen-Yuan Qiao, Qiang Guo, Cong Li, Shuang Ma, Fu-Zhi Wang, Song-Yuan Dai, Zhan-Ao Tan

Journal of Electrochemistry

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a commonly used hole-transport material in the perovskite solar cells (PerSCs) structure of perovskite/fullerene planer heterojunction, but it also has a negative effect on the stability of device because of its acidity which will corrode metal oxide transparent electrodes. In this work, a WOx hole-transport layer with high work function was inserted into the PEDOT: PSS and FTO to enhance the stability and photovoltaic performance. The inserted WOx layer not only can avoid direct contact between PEDOT:PSS and FTO, but also can further reduce the contact barrier between the electrode interface. We studied the effect …


Contact Radius And Insulator-Metal Transition In Films Comprised Of Touching Semiconductor Nanocrystals, Deanna M. Lanigan Aug 2016

Contact Radius And Insulator-Metal Transition In Films Comprised Of Touching Semiconductor Nanocrystals, Deanna M. Lanigan

McKelvey School of Engineering Theses & Dissertations

Nanocrystal assemblies are being explored for a number of optoelectronic applications such as transparent conductors, photovoltaic solar cells, and electrochromic windows. Majority carrier transport is important for these applications, yet it remains relatively poorly understood in films comprised of touching nanocrystals. Specifically, the underlying structural parameters expected to determine the transport mechanism have not been fully elucidated. In this report, we demonstrate experimentally that the contact radius, between touching heavily doped ZnO nanocrystals, controls the electron transport mechanism. Spherical nanocrystals are considered, which are connected by a circular area. The radius of this circular area is the contact radius. For …


Contribution Of Fiber Undulation To Mechanics Of Three-Dimensional Collagen-I Gel, Shengmao Lin, Linxia Gu Jul 2016

Contribution Of Fiber Undulation To Mechanics Of Three-Dimensional Collagen-I Gel, Shengmao Lin, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The collagen-I gel is extensively used as a scaffold material in tissue engineering due to its ability to mimic the extracellular matrix (ECM). In this study, the mechanics of collagen-I gel is investigated using a numerical model of three-dimensional collagen network. The resulted mechanical behavior was validated against the published experimental data. Results illustrated that fiber alignment was dominated in the low strain region, and its transition to stretching dominated phenomena at higher strain led to the strain stiffening of collagen gel. The collagen undulation at the microscopic level was found to delay the initiation of strain stiffening


Effects Of Electrode Off Centre On Trapped Thickness-Shear Modes In Contoured At-Cut Quartz Resonators, Junjie Shi, Cuiying Fan, Minghao Zhao, Jiashi S. Yang Jun 2016

Effects Of Electrode Off Centre On Trapped Thickness-Shear Modes In Contoured At-Cut Quartz Resonators, Junjie Shi, Cuiying Fan, Minghao Zhao, Jiashi S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We investigated thickness-shear vibrations of a contoured, AT-cut quartz resonator with a pair of electrodes displaced from the resonator centre. The scalar differential equations by Stevens and Tiersten for thickness-shear vibrations of electroded and unelectroded quartz plates were employed. Based on the variational formulation of the scalar differential equations established in a previous paper and the variation-based Ritz method with trigonometric functions as basis functions, free vibration resonance frequencies and trapped thickness-shear modes were obtained. The effects of the electrode off centre on resonance frequencies and mode shapes were examined. When the electrode off centre is about one hundredth of …


Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf May 2016

Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf

FIU Electronic Theses and Dissertations

Ultra high temperature ceramics (UHTC) are candidate materials for high temperature applications such as leading edges for hypersonic flight vehicles, thermal protection systems for spacecraft, and rocket nozzle throat inserts due to their extremely high melting points. Tantalum and Niobium Carbide (TaC and NbC), with melting points of 3950°C and 3600°C, respectively, have high resistivity to chemical attack, making them ideal candidates for the harsh environments UHTCs are to be used in. The major setbacks to the implementation of UHTC materials for these applications are the difficulty in consolidating to full density as well as their low fracture toughness. In …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


Focal Adhesion Kinase Regulation In Stem Cell Alignment And Spreading On Nanofibers, Mohammad Nahid Andalib, Jeong Soon Lee, Ligyeom Ha, Yuris A. Dzenis, Jung Yul Lim May 2016

Focal Adhesion Kinase Regulation In Stem Cell Alignment And Spreading On Nanofibers, Mohammad Nahid Andalib, Jeong Soon Lee, Ligyeom Ha, Yuris A. Dzenis, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

While electrospun nanofibers have demonstrated the potential for novel tissue engineering scaffolds, very little is known about the molecular mechanism of how cells sense and adapt to nanofibers. Here, we revealed the role of focal adhesion kinase (FAK), one of the key molecular sensors in the focal adhesion complex, in regulating mesenchymal stem cell (MSC) shaping on nanofibers. We produced uniaxially aligned and randomly distributed nanofibers from poly(L-lactic acid) to have the same diameters (about 130 nm) and evaluated MSC behavior on these nanofibers comparing with that on flat PLLA control. C3H10T1/2 murine MSCs exhibited upregulations in FAK expression and …


Nanoscale Frictional Properties Of Nickel With One-Dimensional And Two-Dimensional Materials, Timothy K. Schlenger May 2016

Nanoscale Frictional Properties Of Nickel With One-Dimensional And Two-Dimensional Materials, Timothy K. Schlenger

Mechanical Engineering Undergraduate Honors Theses

When looking at the nanoscale, material interface interactions have been observed to exhibit particularly interesting properties. Our research looks into various combinations of carbyne and graphene atop a nickel block to look into the interface friction properties between them. Both the carbyne and graphene are tested using steered molecular dynamics (SMD) in sheering and peeling directions along the surface of the nickel block. These tests are then analyzed by comparing the magnitude of the acting force versus the displacement of the carbon allotrope sample across the nickel block. It is found that as the width of a carbon allotrope sample …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …