Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 1311

Full-Text Articles in Engineering Science and Materials

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Numerical Analysis Of Flow Fields For The Different Models Of The Shrouded Savonius Rotor, Alsaied Khalil Mahmoud, Mohamed Mahgoub Bassuoni, Mohamed Fawzy Obiaa, Ahmed Mostafa Khaira Mar 2024

Numerical Analysis Of Flow Fields For The Different Models Of The Shrouded Savonius Rotor, Alsaied Khalil Mahmoud, Mohamed Mahgoub Bassuoni, Mohamed Fawzy Obiaa, Ahmed Mostafa Khaira

Journal of Engineering Research

In this study, the effect of three different lengths (short, medium, and long) of flanged shrouded Savonius wind turbines is investigated three-dimensional (3-D) numerically by ANSYS-FLUENT. The 3-D numerical model of a simple rotor is validated by comparing the results with previous published experimental ones at the same operating conditions and geometry. The numerical and experimental results indicate a good agreement with each other when using the SST K-ω model with a time step size of 0.0025 s.The analysis of the numerical results of the three flanged shrouded models shows an enhancement of the torque coefficient at tip speed ratio …


A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi Jan 2024

Mechanics Of Pure Bending And Eccentric Buckling In High-Strain Composite Structures, Jimesh D. Bhagatji, Oleksandr G. Kravchenko, Sharanabasaweshwara Asundi

Mechanical & Aerospace Engineering Faculty Publications

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This paper presents fabrication, experimental testing, and progressive failure modeling to study the deformation of an ultra-thin composite beam. The research study examines the deformation modes of a post-deployed boom under repetitive pure bending loads using a four-point bending setup and …


Me-Em Enewsbrief, December 2023, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Jan 2024

Me-Em Enewsbrief, December 2023, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


External Direct Sum Invariant Subspace And Decomposition Of Coupled Differential-Difference Equations, Keqin Gu, Huan Phan-Van Jan 2024

External Direct Sum Invariant Subspace And Decomposition Of Coupled Differential-Difference Equations, Keqin Gu, Huan Phan-Van

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses the invariant subspaces that are restricted to be external direct sums. Some existence conditions are presented that facilitate finding such invariant subspaces. This problem is related to the decomposition of coupled differential-difference equations, leading to the possibility of lowering the dimensions of coupled differential-difference equations. As has been well documented, lowering the dimension of coupled differential-difference equations can drastically reduce the computational time needed in stability analysis when a complete quadratic Lyapunov-Krasovskii functional is used. Most known ad hoc methods of reducing the order are special cases of this formulation.


Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu Jan 2024

Structured Invariant Subspace And Decomposition Of Systems With Time Delays And Uncertainties, Huan Phan-Van, Keqin Gu

SIUE Faculty Research, Scholarship, and Creative Activity

This article discusses invariant subspaces of a matrix with a given partition structure. The existence of a nontrivial structured invariant subspace is equivalent to the possibility of decomposing the associated system with multiple feedback blocks such that the feedback operators are subject to a given constraint. The formulation is especially useful in the stability analysis of time-delay systems using the Lyapunov-Krasovskii functional approach where computational efficiency is essential in order to achieve accuracy for large scale systems. The set of all structured invariant subspaces are obtained (thus all possible decompositions are obtained as a result) for the coupled differential-difference equations …


Multi-Mode Regulation Of The Drying Process Of Industrial Gas, Isamidin Xakimovich Sidikov Pr, Nashvandova Gulruxsor Murot Qizi Phd Dec 2023

Multi-Mode Regulation Of The Drying Process Of Industrial Gas, Isamidin Xakimovich Sidikov Pr, Nashvandova Gulruxsor Murot Qizi Phd

Technical science and innovation

Currently, much attention is paid to the issue of energy efficiency of gas processing enterprises. The continuous growth of world prices for energy resources requires constant improvement of the management system, providing the most optimal conditions for the flow of technological processes. A conceptual model of the heat-mass transfer process occurring in the absorber as an object of research has been developed, which characterizes the relationship of the variables involved in the drying process of natural gas, control, measurable and immeasurable, as well as controlled parameters have been selected, which are used to develop and study a mathematical model of …


Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia Dec 2023

Reducing Food Scarcity: The Benefits Of Urban Farming, S.A. Claudell, Emilio Mejia

Journal of Nonprofit Innovation

Urban farming can enhance the lives of communities and help reduce food scarcity. This paper presents a conceptual prototype of an efficient urban farming community that can be scaled for a single apartment building or an entire community across all global geoeconomics regions, including densely populated cities and rural, developing towns and communities. When deployed in coordination with smart crop choices, local farm support, and efficient transportation then the result isn’t just sustainability, but also increasing fresh produce accessibility, optimizing nutritional value, eliminating the use of ‘forever chemicals’, reducing transportation costs, and fostering global environmental benefits.

Imagine Doris, who is …


Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan Dec 2023

Modeling Of Asphalt Concrete For Cross-Anisotropic Visco-Elasticity And Heterogeneity, Zafrul Hakim Khan

Civil Engineering ETDs

Asphalt Concrete (AC) is a cross-anisotropic viscoelastic material. This study has developed a methodology to backcalculate the cross-anisotropic properties of the AC layer from the Falling Weight Deflectometer (FWD) sensor and pavement response data from embedded sensors inside a pavement section. This study has also developed a two-way coupled Multiscale Finite Element Model (MsFEM) with Phase Field Fracture (PFF) to study the microstructural heterogeneity and damage of the AC layer based on the actual field loadings. A Finite Difference Time Domain (FDTD) and Machine learning-based backcalculation algorithm were developed to determine the layer thickness and dielectric constant from air-coupled Ground …


Ultrasonic Non-Destructive Evaluation Of Additively Manufactured Polymer-Ceramic Composites, Christian Alexander Ruiz Dec 2023

Ultrasonic Non-Destructive Evaluation Of Additively Manufactured Polymer-Ceramic Composites, Christian Alexander Ruiz

Open Access Theses & Dissertations

Digital light processing (DLP) is an attractive additive manufacturing technique due to its ability to create ceramic parts with complex geometries. DLP uses ultraviolet light to polymerize a slurry comprised of ceramic powder and photosensitive resin in layers to create solid parts. Printing parameters such as light intensity and exposure time are critical when producing these parts. Improper parameters can lead to over or under-curing, adversely impacting print quality and strength. Samples were printed at varying layer exposure times and then tested using ultrasonics to determine the degree of conversion. Additionally, ultrasonics were used as a non-destructive technique to obtain …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


A Review On The Coalescence Of Confined Drops With A Focus On Scaling Laws For The Growth Of The Liquid Bridge, Sangjin Ryu, Haipeng Zhang, Udochukwu John Anuta Oct 2023

A Review On The Coalescence Of Confined Drops With A Focus On Scaling Laws For The Growth Of The Liquid Bridge, Sangjin Ryu, Haipeng Zhang, Udochukwu John Anuta

Department of Mechanical and Materials Engineering: Faculty Publications

The surface–tension-driven coalescence of drops has been extensively studied because of the omnipresence of the phenomenon and its significance in various natural and engineering systems. When two drops come into contact, a liquid bridge is formed between them and then grows in its lateral dimensions. As a result, the two drops merge to become a bigger drop. The growth dynamics of the bridge are governed by a balance between the driving force and the viscous and inertial resistances of involved liquids, and it is usually represented by power–law scaling relations on the temporal evolution of the bridge dimension. Such scaling …


Revealing Interface-Assisted Plastic Anisotropy Via In Situ Transmission Electron Microscopy Tension Of Lamellar Tial, Zhixiang Qi, Qi Zhu, Jian Wang, Yuede Cao, Fengrui Chen, Jiangwei Wang, Yang Chen, Gong Zheng, Guang Chen Oct 2023

Revealing Interface-Assisted Plastic Anisotropy Via In Situ Transmission Electron Microscopy Tension Of Lamellar Tial, Zhixiang Qi, Qi Zhu, Jian Wang, Yuede Cao, Fengrui Chen, Jiangwei Wang, Yang Chen, Gong Zheng, Guang Chen

Department of Mechanical and Materials Engineering: Faculty Publications

Assembling functional units into specific orientation organizations based on functional unit and organization (FUO) paradigm can maximize utilizing mechanical property anisotropy of lamellar-structured materials. However, the origin of their anisotropic deformation behaviors has not been clearly understood. Taking the fully lamellar γ-TiAl/ α2-Ti3Al dual-phase single crystal as an example, we decouple the interface functional units governed anisotropic plastic deformation through in situ transmission electron microscopy tensile testing and multiscale microstructural characterizations. The orientation organization-dependent slip continuity across the γ/α2 interface and interface strength play a determinant role in plastic anisotropy beyond intrinsic dislocation activities within …


Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery, Justin R. Brooks, Tyler C. Heiman, Sawyer R. Lorenzen, Ikhlaas Mungloo, Siamak Mirfendereski, Jae Sung Park, Ruiguo Yang Oct 2023

Transepithelial Electrical Impedance Increase Following Porous Substrate Electroporation Enables Label-Free Delivery, Justin R. Brooks, Tyler C. Heiman, Sawyer R. Lorenzen, Ikhlaas Mungloo, Siamak Mirfendereski, Jae Sung Park, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

Porous substrate electroporation (PSEP) is a promising new method for delivering molecules such as proteins and nucleic acids into cells for biomedical research. Although many applications have been demonstrated, fundamentals of the PSEP delivery process are not yet well understood, partly because most PSEP studies rely solely on fluorescent imaging for evaluating delivery and quantifying successful outcomes. Although effective, only utilizing imaging alone limits our understanding of the intermediate processes leading to intracellular delivery. Since PSEP is an electrical process, electrical impedance measurements are a natural addition to fluorescent imaging for PSEP characterization. In this study, we developed an integrated …


Increased Ductility Of Ti-6al-4v By Interlayer Milling During Directed Energy Deposition, Rakeshkumar Karunakaran, Luz D. Sotelo, Hitarth Maharaja, Calsey Nez, Monsuru Ramoni, Scott Halliday, Sushil Mishra, Joseph A. Turner, Michael P. Sealy Oct 2023

Increased Ductility Of Ti-6al-4v By Interlayer Milling During Directed Energy Deposition, Rakeshkumar Karunakaran, Luz D. Sotelo, Hitarth Maharaja, Calsey Nez, Monsuru Ramoni, Scott Halliday, Sushil Mishra, Joseph A. Turner, Michael P. Sealy

Department of Mechanical and Materials Engineering: Faculty Publications

Additive manufacturing (AM) often results in high strength but poor ductility in titanium alloys. Hybrid AM is a solution capable of improving both ductility and strength. In this study, hybrid AM of Ti-6Al-4V was achieved by coupling directed energy deposition with interlayer machining. The microstructure, residual stress, and microhardness were examined to explain how interlayer machining caused a 63% improvement in ductility while retaining an equivalent strength to as-printed samples. Interlayer machining introduced recurrent interruptions in printing that allowed for slow cooling-induced coarsening of acicular α laths at the machined interfaces. The coarse α laths on the selectively machined layers …


Acoustophoresis Around An Elastic Scatterer In A Standing Wave Field, Khemraj Gautam Kshetri, Nitesh Nama Oct 2023

Acoustophoresis Around An Elastic Scatterer In A Standing Wave Field, Khemraj Gautam Kshetri, Nitesh Nama

Department of Mechanical and Materials Engineering: Faculty Publications

Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the timeaveraged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with …


Me-Em Enewsbrief, September 2023, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Oct 2023

Me-Em Enewsbrief, September 2023, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Switching Methods For Three-Dimensional Rotational Dynamics Using Modified Rodrigues Parameters, Matthew Jarrett Banks Oct 2023

Switching Methods For Three-Dimensional Rotational Dynamics Using Modified Rodrigues Parameters, Matthew Jarrett Banks

Mechanical & Aerospace Engineering Theses & Dissertations

A rigid body in space has three degrees of rotational freedom. As a result, a minimum of three independent parameters is required to define the three-dimensional orientation of a rigid body. As is well known, every set of three independent parameters has at least one orientation where mathematical or geometrical singularities are encountered; therefore, when the use of a three-parameter representation is desired, a method for singularity avoidance must also be considered. A common practice for singularity avoidance is to switch between parameter sets whose singularities occur at different orientations. With this in mind, modified Rodrigues parameters (MRP) are considered …


Stomatal Opening Efficiency Is Controlled By Cell Wall Organization In Arabidopsis Thaliana, Sedighe Keynia, Leila Jaafar, You Zhou, Charles T. Anderson, Joseph A. Turner Sep 2023

Stomatal Opening Efficiency Is Controlled By Cell Wall Organization In Arabidopsis Thaliana, Sedighe Keynia, Leila Jaafar, You Zhou, Charles T. Anderson, Joseph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Stomatal function in plants is regulated by the nanoscale architecture of the cell wall and turgor pressure, which together control stomatal pore size to facilitate gas exchange and photosynthesis. The mechanical properties of the cell wall and cell geometry are critical determinants of stomatal dynamics. However, the specific biomechanical functions of wall constituents, for example, cellulose and pectins, and their impact on the work required to open or close the stomatal pore are unclear. Here, we use nanoindentation in normal and lateral directions, computational modeling, and microscopic imaging of cells from the model plant Arabidopsis thaliana to investigate the precise …


Me-Em Enewsbrief, June 2023, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University Sep 2023

Me-Em Enewsbrief, June 2023, Department Of Mechanical Engineering-Engineering Mechanics, Michigan Technological University

Department of Mechanical Engineering-Engineering Mechanics eNewsBrief

No abstract provided.


Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng Aug 2023

Numerical Modeling And Simulation On Deformation And Failure Behaviors Of Polymeric Materials, Heng Feng

Electronic Thesis and Dissertation Repository

Featured by biocompatibility, high compliance and capacity in sustaining large deformation, dielectric elastomers (DEs) and hydrogels have gained extensive research popularity for their potential applications in the fields of soft robots, biomimetics, tissue engineering, drug delivery, and energy harvesting. The design of such soft and smart material-based devices and structures requires deep understanding and accurate simulation of their constitutive behaviors, which is challenged by their nonlinear material properties due to unique microstructures and multi-physics coupling. Meanwhile, in different application contexts, those structures are also susceptible to different failure modes, imposing further challenges in simulating and predicting their performance. To fulfill …


Influence Of Forming Forces On Torsional, Tensile, And Compressive Deformation Of Paperboard Packages, Arvo Niini, Panu Tanninen, Juha Varis, Ville Leminen Aug 2023

Influence Of Forming Forces On Torsional, Tensile, And Compressive Deformation Of Paperboard Packages, Arvo Niini, Panu Tanninen, Juha Varis, Ville Leminen

Journal of Applied Packaging Research

Paperboard packages were tested mechanically to investigate influence of forming forces on torsional, tensile, and compressive deformation. The packages were paperboard trays which were press formed with different pressing forces and blank holder forces. Deformation of the trays was observed with torsion, compression, and tensile tests. A statistical analysis of test results was conducted to derive optimal forming forces. Increased pressing force yielded desirable deformation characteristics with the trays. Blank holder force had largest impact on the compressive deformation. Interaction of the pressing force and the blank holder force influenced the torsional and the compressive deformation. The optimal forming forces …


Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho Aug 2023

Double Cantilever Beam Mode-I Testing Validation In Large-Scale Additive Manufacturing Carbon Composite, Luis Alfonso Camacho

Open Access Theses & Dissertations

Testing for mechanical properties for additive manufacturing has been based on already existing standards for traditional manufacturing methods. For composites in large scale additive manufacturing there is a research gap in bond strength and fracture toughness for a single layer interface. By using Double cantilever beam Mode I, this thesis manuscript validates testing parameters and protocols to describe the intricacies of ABS matrix 20 wt.% carbon filled composite, specifically on the layer-to-layer interface. Studies suggest that fracture toughness is sensitive to process parameters, like deflection speed and sharpened crack tip at the layer interface of BAAM 3D printed part and …


Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp Aug 2023

Multiscale Modeling And Gaussian Process Regression For Applications In Composite Materials, Joshua Arp

All Dissertations

An ongoing challenge in advanced materials design is the development of accurate multiscale models that consider uncertainty while establishing a link between knowledge or information about constituent materials to overall composite properties. Successful models can accurately predict composite properties, reducing the high financial and labor costs associated with experimental determination and accelerating material innovation. Whereas early pioneers in micromechanics developed simplistic theoretical models to map these relationships, modern advances in computer technology have enabled detailed simulators capable of accurately predicting complex and multiscale phenomena.

This work advances domain knowledge via two means: firstly, through the development of high-fidelity, physics-based finite …


Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji Aug 2023

Development, Experimental Validation, And Progressive Failure Modeling Of An Ultra-Thin High Stiffness Deployable Composite Boom For In-Space Applications, Jimesh D. Bhagatji

Mechanical & Aerospace Engineering Theses & Dissertations

To maximize the capabilities of nano- and micro-class satellites, which are limited by their size, weight, and power, advancements in deployable mechanisms with a high deployable surface area to packaging volume ratio are necessary. Without progress in understanding the mechanics of high-strain materials and structures, the development of compact deployable mechanisms for this class of satellites would be difficult. This research focuses on fabrication, experimental testing, and progressive failure modelling to study the deformation of an ultra-thin composite beam. The research study examines deformation modes of a boom under repetitive pure bending loads using 4-point bending setup. The material and …


Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady Aug 2023

Characterization Of Mechanically Recycled Polylactic Acid (Pla) Filament For 3d-Printing By Evaluating Mechanical, Thermal, And Chemical Properties And Process Performance, Mahsa Shabani Samghabady

All Theses

Polylactic acid (PLA) is a biopolymer made from renewable resources such as sugar and corn. PLA filament is a popular material used in Fused Deposition Modeling (FDM) 3D-printing. While this material has many advantages, all the failed parts, support structures, rafts, nozzle tests, and the many prototype iterations during the 3D-printing process contribute to the plastic pollution and release of greenhouse gases. Although PLA is biodegradable, it can take years to degrade in landfills. Instead of throwing away PLA waste and buying new filaments, PLA can be recycled. Amongst the different recycling technologies, mechanical recycling is the most environmentally friendly. …