Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Science and Materials

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang Sep 2016

Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang

Electronic Thesis and Dissertation Repository

The fracture toughness resistance curve, i.e. the J-integral resistance curve (J-R curve) or the crack tip opening displacement resistance (CTOD-R) curves, is widely used in the integrity assessment and strain-based design of energy pipelines with respect to planar defects (i.e. cracks). This thesis deals with issues related to the experimental determination of the J(CTOD)-R curves using the newly-developed single-edge (notched) tension (SE(T)) specimens. In the first study, the plastic geometry factor, i.e. the ηpl factor, used to evaluate J in a J-R curve test based on …


Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang May 2016

Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang

Masters Theses

Fe-based alloys are important structural materials for both fission and fusion energy. For fusion applications, the challenges of radiation-induced changes in microstructure, properties and performance is further challenged by the concomitant production of helium from (n, alpha) nuclear reactions and fusion reactions. Due to the lack of a volumetric, high flux 14-MeV neutron source, studying these phenomena require the use of computational materials modeling and novel experimental methods. In this thesis, molecular dynamics (MD) simulations was used to investigate the synergistic interactions of helium with prismatic dislocation loops characteristic of those observed in neutron irradiated iron to determine how the …


Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz Mar 2016

Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz

Masters Theses

Solar technology has been a major topic in sustainable design for many years. In the last five years, however, the solar technology industry has seen a rapid growth in installations and technological advances in cell design. Combined with a rapidly declining overall system cost, the idea of introducing solar technology into a wider range of applications is becoming a focus for engineers and scientists around the world. So many variables which alter solar energy production, such as the sun and surrounding environment, determine whether a solar design is beneficial. This thesis presents a bridge deck surface integrated with solar cells …


Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati Jan 2016

Methodology For Analyzing Epoxy-Cnt Phononic Crystals For Wave Attenuation And Guiding, Madhu Kolati

Dissertations, Master's Theses and Master's Reports

Phononic crystals (PhnCs) control, direct and manipulate sound waves to achieve wave guiding and attenuation. This dissertation presents methodology for analyzing nanotube materials based phononic crystals to achieve control over sound, vibration and stress mitigation. Much of the analytical work presented is in identifying frequency band gaps in which sound or vibration cannot propagate through these PhnCs. Wave attenuation and mitigation analysis is demonstrated using finite element simulation. Engineering principles from current research areas of solid mechanics, solid-state physics, elasto-dynamics, mechanical vibrations and acoustics are employed for the methodology. A considerable effort is put to show that these PhnCs can …