Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Hydration Kinetics, Microstructure, And Mechanical Strength Development Of Cement-Based Composites Incorporating Phase Change Materials, Afshin Marani Jun 2022

Hydration Kinetics, Microstructure, And Mechanical Strength Development Of Cement-Based Composites Incorporating Phase Change Materials, Afshin Marani

Electronic Thesis and Dissertation Repository

The research conducted in this thesis investigates the effects of phase change materials (PCMs) on the hydration kinetics and strength development of cement-based composites using extensive experimental and numerical analyses. Purposefully, the effect of microencapsulated PCMs (MPCMs) on the strength development of cement-based mortars and concretes was evaluated using powerful machine learning models trained with the largest available experimental data. Furthermore, a novel ternary machine learning approach was proposed to optimize the mixture design of mortars and concretes based on the thermos-physical properties of the MPCMs. The results obtained from machine learning simulations suggest the assessment of the effects of …


Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson Jul 2021

Development Of A Wireless Telemetry Load And Displacement Sensor For Orthopaedic Applications, William Anderson

Electronic Thesis and Dissertation Repository

Due to sensor size and supporting circuitry, in vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this thesis is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in biomechanical applications. The capacitive transducer membrane of the FXTH87 was modified, and a relationship was reported between applied compressive deformation and sensor signal value. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. Finite element analysis was an effective tool to …


Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang Sep 2016

Numerical Studies For Improving Fracture Toughness Resistance Curve Testing Using Single-Edge (Notched) Tension Specimens, Yifan Huang

Electronic Thesis and Dissertation Repository

The fracture toughness resistance curve, i.e. the J-integral resistance curve (J-R curve) or the crack tip opening displacement resistance (CTOD-R) curves, is widely used in the integrity assessment and strain-based design of energy pipelines with respect to planar defects (i.e. cracks). This thesis deals with issues related to the experimental determination of the J(CTOD)-R curves using the newly-developed single-edge (notched) tension (SE(T)) specimens. In the first study, the plastic geometry factor, i.e. the ηpl factor, used to evaluate J in a J-R curve test based on …


Mechanistic Failure Criterion For Unidirectional And Random Fibre Polymer Composites, Jamaloddin Jamali Jun 2014

Mechanistic Failure Criterion For Unidirectional And Random Fibre Polymer Composites, Jamaloddin Jamali

Electronic Thesis and Dissertation Repository

Polymer composite design in energy absorbing components requires a failure criterion that can predict the energy involved in its fracture under different modes of loading. Present mixed mode criteria are mainly empirical or semi-empirical, and are only suitable for a small range of composite types.

The purpose of this study was to develop a mechanistic failure criterion that is applicable to a wide range of polymer composites. An energy based mechanistic failure criterion is proposed to characterize the toughness of unidirectional (UD) and randomly oriented short fibre composites (random fibre composites).

In UD and random composites, the criterion predicts the …


Numerical Modeling Of Solidification Process And Prediction Of Mechanical Properties In Magnesium Alloys, Mehdi Farrokhnejad Aug 2013

Numerical Modeling Of Solidification Process And Prediction Of Mechanical Properties In Magnesium Alloys, Mehdi Farrokhnejad

Electronic Thesis and Dissertation Repository

A formulation used to simulate the solidification process of magnesium alloys is developed based upon the volume averaged finite volume method on unstructured collocated grids. To derive equations, a non-zero volume fraction gradient has been considered and resulting additional terms are well reasoned. For discretization the most modern approximations for gradient and hessians are used and novelties outlined. Structure-properties correlations are incorporated into the in-house code and the proposed formulation is tested for a wedge-shaped magnesium alloy casting. While the results of this study show a good agreement with the experimental data, it was concluded that a better understanding of …