Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Power and Energy

2013

Carbon coating

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun Dec 2013

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun

Journal of Electrochemistry

High potential LiCoPO4 cathode material was synthesized by polyol method. Carbon layer of ca. 3 nm thick was coated on the LiCoPO4 surfaces by chemical vapor deposition from methylbenzene. Crystalline structure, morphology and electrochemical performance of the sample were studied by XRD, SEM, TEM, CV and galvanostatic charge/discharge curve. The synthesized material via polyol method showed a pure phase of LiCoPO4. The LiCoPO4/C electrode delivered a high discharge capacity of 132 mAh·g-1 and maintained 78% of the initial capacity after 50 cycles at 0.1C rate. The two-step extraction/insertion behavior of Li+ in LiCoPO4/C …


Properties Of Carbon Coated Tin Negative Electrode For Lithium-Ion Battery, Gui-Chang Liu, Xiao-Xiao Shen, Li-Da Wang Apr 2013

Properties Of Carbon Coated Tin Negative Electrode For Lithium-Ion Battery, Gui-Chang Liu, Xiao-Xiao Shen, Li-Da Wang

Journal of Electrochemistry

Carbon coated tin power was prepared by decomposing glucose applying a hydrothermal method, and was further used as the active material for negative electrode of lithium secondary battery. Charge-discharge tests show that the carbon coated tin electrode with the addition of 5 wt.% acetylene black as a conductive agent could obtain an initial discharge capacity of 967 mAh.g-1 and a discharge capacity of 362 mAh.g-1 after 50 cycles, which is much higher than that of tin electrode (166 mAh.g-1 after 50 cycles). The coated carbon hinders the agglomeration of tin powder, reduces the irreversible capacity loss of …