Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering Science and Materials

Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan Aug 2021

Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan

Journal of Electrochemistry

The slow kinetics of oxygen reduction reaction (ORR) limits the performance of low temperature fuel cells. Thus, it needs to design effective catalysts with low cost. Core-shell clusters (CSNCs) show promising activity because of their size-dependent geometric and electronic effects. The ORR activity trend of Nim@Pt1Aun-m-1(n = 19, 38, 55, 79; m = 1, 6, 13, 19) was studied using the GGA-PBE-PAW methods. The adsorption configurations of *O, *OH and *OOH were optimized and the reaction free energies of four proton electron (H+ + e-) transfer steps were calculated. Using …


Computational Design Of Two-Dimensional Transition Metal Dichalcogenide Alloys And Their Applications, John Douglas Cavin May 2021

Computational Design Of Two-Dimensional Transition Metal Dichalcogenide Alloys And Their Applications, John Douglas Cavin

Arts & Sciences Electronic Theses and Dissertations

The discovery of bronze as an alloy of copper and tin is arguably the earliest form of material design, dating back thousands of years. In contrast, two-dimensional materials are new to the 21st century. The research presented in this dissertation is at the intersection of alloying and two-dimensional materials. I specifically study a class of two-dimensional materials known as transition metal dichalcogenides (TMDCs). Because of the large number of transition metals, there are many combinations of TMDCs that can be alloyed, making experimental exploration of the phase space of possible alloys unwieldly. Instead, I have applied first-principles methods to study …


Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon Dec 2020

Developments Of Machine Learning Potentials For Atomistic Simulations, Howard Yanxon

UNLV Theses, Dissertations, Professional Papers, and Capstones

Atomistic modeling methods such as molecular dynamics play important roles in investigating time-dependent physical and chemical processes at the microscopic level. In the simulations, energy and forces, sometimes including stress tensor, need to be recalculated iteratively as the atomic configuration evolves. Consequently, atomistic simulations crucially depend on the accuracy of the underlying potential energy surface. Modern quantum mechanical modeling based on density functional theory can consistently generate an accurate description of the potential energy surface. In most cases, molecular dynamics simulations based on density functional theory suffer from highly demanding computational costs. On the other hand, atomistic simulations based on …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Density Functional Theory Study On The Structures Of Solvent-Ion In The Electrolyte Of Lithium Ion Battery, Li-Dan Xing, Ru Yang, Xian-Wen Tang, Wen-Na Huang, Qi-Feng Liu, Qi-Peng Yu, Wei-Shan Li Dec 2014

Density Functional Theory Study On The Structures Of Solvent-Ion In The Electrolyte Of Lithium Ion Battery, Li-Dan Xing, Ru Yang, Xian-Wen Tang, Wen-Na Huang, Qi-Feng Liu, Qi-Peng Yu, Wei-Shan Li

Journal of Electrochemistry

In this work, the possible structures of solvent-ion complex, resulting from the electrostatic interaction in the propylene carbonate (PC) base electrolyte of lithium ion battery, have been investigated using the density functional theory. The calculated results show that the structure of solvent-ion complex depends on the solvent number. In the PC base electrolyte, maximum number of PC solvents that coexist in the Li+-solvent sheath is four. Additionally, the salt anion exists in a complex with the positively charged alkyl group of PC rather than in a free state. The calculated results give a good explanation to the reported …


Electrochemical Catalysis: A Dft Study, Li Li, Zi-Dong Wei Aug 2014

Electrochemical Catalysis: A Dft Study, Li Li, Zi-Dong Wei

Journal of Electrochemistry

In this review, we focus on achievements in electro-catalysis based on the density function theory study. The relationships among the electrode potential, electronic structure of catalysts and electro-catalytic activity are summarized in three parts: the adsorption and desorption of species, electron transfer, and stability of catalysts. The electrode potential and the electronic structure (d-band center or Fermi (HOMO) energy) of catalysts significantly influence the formation, adsorption and desorption of surface species on electrode. The electro-catalytic activity can be improved by modulating the electrode potential and electronic structure of catalysts.