Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu Dec 2015

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu

Doctoral Dissertations

A number of computational methodologies have been developed to investigate the deformation and damage mechanism of various structural materials at different length scale and under extreme loading conditions, and also to provide insights in the development of high-performance materials.

In microscopic material behavior and failure modes, polycrystalline metals of interest include heterogeneous deformation field due to crystalline anisotropy, inter/intra grain or phase and grain boundary interactions. Crystal plasticity model is utilized to simulate microstructure based polycrystalline materials, and micro-deformation information, such as lattice strain evolution, can be captured based on crystal plasticity finite element modeling (CPFEM) in ABAQUS. The comparison …


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …


Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines Feb 2015

Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines

Dissertations, Theses, and Capstone Projects

Specifically, the project involves the development of a diversified array of nanostructured gas-sensors comprised of selectively, novel surface-functionalized carbon nanotubes (for analyte selectivity by virtue of functionality). Harnessing carbon nanotubes with various electron withdrawing and donating groups help in determining their affinity toward certain prognostic gaseous markers thus increasing specificity of such created sensors. We have devised synthetic routes that have led to the facile production of covalently polyfunctionalized nanotubes in high yield. Seven carbon nanotube analogues were systematically considered and then chemically synthesized, from pristine single-walled nanotubes (SWNT's), for use as the main component of sensory units that was …


Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari Jan 2015

Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari

Open Access Theses & Dissertations

In the current study, a series of novel magnetic and non-magnetic hybrid nanocomposites based on metal-organic frameworks (MOFs) of M3(BTC)2 (M: Ni, Cu, Zn, and Cd), graphene oxide (GrO), and carbon nanotubes (CNTs), and Fe3O4 magnetic nanoparticles (MNPs) were developed via a green, simple and versatile solvothermal method at which GrO and CNT were used as platform to grow the MOFs and Fe3O4 MNPs over them. The as-synthesized nanocomposites were characterized by XRD, SEM, TEM, XPS, IR, Raman, TGA, and N2 adsorption/desorption isotherms. Morphological analysis confirmed successful growth of nano-size Fe3O4 MNPs and M3(BTC)2 MOFs over GrO and CNT platforms. …


The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang Jan 2015

The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang

Graduate College Dissertations and Theses

Σ3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumption. A recent study [Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697-702.] has revealed the existence of intrinsic kink-like defects in CTBs of nanotwinned copper through nanodiffraction mapping technique, and has confirmed the effect of …