Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

Development Of Phosphorus-Based Electrode Materials For Energy Storage Applications, Amin Rabiei Baboukani Mar 2021

Development Of Phosphorus-Based Electrode Materials For Energy Storage Applications, Amin Rabiei Baboukani

FIU Electronic Theses and Dissertations

With the rapid development of modern society, the huge demand for energy storage systems from fossil fuels leads to dramatic increasing of greenhouse gases. Therefore, an efficient green energy storage system with high energy density and stable cyclability is urgently required for advanced electronics. The electrochemical performance of energy storage devices strongly depends on the electrode materials. Among the recent advances on electrode materials, phosphorus as an earth-abundant element with high theoretical specific capacity (2596 mAhg-1) and low cost has attracted intensive attention. From different allotropes of phosphorus, red phosphorus (RP) and black phosphorus (BP) show promising electrochemical …


Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf May 2016

Microstructure And Mechanical Properties Of Nanofiller Reinforced Tantalum-Niobium Carbide Formed By Spark Plasma Sintering, Christopher Charles Rudolf

FIU Electronic Theses and Dissertations

Ultra high temperature ceramics (UHTC) are candidate materials for high temperature applications such as leading edges for hypersonic flight vehicles, thermal protection systems for spacecraft, and rocket nozzle throat inserts due to their extremely high melting points. Tantalum and Niobium Carbide (TaC and NbC), with melting points of 3950°C and 3600°C, respectively, have high resistivity to chemical attack, making them ideal candidates for the harsh environments UHTCs are to be used in. The major setbacks to the implementation of UHTC materials for these applications are the difficulty in consolidating to full density as well as their low fracture toughness. In …